96 research outputs found

    Agglomeration of microparticles in complex plasmas

    Full text link
    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong dust density waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilising the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.Comment: submitted to Phys. Plasm

    The impact of transport across the polar vortex edge on Match ozone loss estimates

    Get PDF
    The Match method for the quantification of polar chemical ozone loss is investigated mainly with respect to the impact of the transport of air masses across the vortex edge. For the winter 2002/03, we show that significant transport across the vortex edge occurred and was simulated by the Chemical Lagrangian Model of the Stratosphere. In-situ observations of inert tracers and ozone from HAGAR on the Geophysica aircraft and balloon-borne sondes, and remote observations from MIPAS on the ENVISAT satellite were reproduced well by CLaMS. The model even reproduced a small vortex remnant that remained a distinct feature until June 2003 and was also observed in-situ by a balloon-borne whole air sampler. We use this CLaMS simulation to quantify the impact of transport across the vortex edge on ozone loss estimates from the Match method. We show that a time integration of the determined vortex average ozone loss rates, as performed in Match, results in a larger ozone loss than the polar vortex average ozone loss in CLaMS. The determination of the Match ozone loss rates is also influenced by the transport of air across the vortex edge. We use the model to investigate how the sampling of the ozone sondes on which Match is based represents the vortex average ozone loss rate. Both the time integration of ozone loss and the determination of ozone loss rates for Match are evaluated using the winter 2002/2003 CLaMS simulation. These impacts can explain the majority of the differences between CLaMS and Match column ozone loss. While the investigated effects somewhat reduce the apparent discrepancy in January ozone loss rates reported earlier, a distinct discrepancy between simulations and Match remains. However, its contribution to the accumulated ozone loss over the winter is not large

    Simulation of denitrification and ozone loss for the Arctic winter 2002/2003

    Get PDF
    We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen (NOy), with a maximum vortex average permanent NOy removal of over 5 ppb in late December between 500 and 550 K and a corresponding increase of NOy of over 2 ppb below about 450 K. The simulated vertical redistribution of NOy is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 3.4·10&#8722;6 cm&#8722;3 h&#8722;1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (<=10%) on the simulated vortex average ozone loss of about 1.1 ppm near the 460 K level. At higher altitudes, above 600 K potential temperature, the simulations show significant ozone depletion through NOx-catalytic cycles due to the unusual early exposure of vortex air to sunlight

    A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe

    Get PDF
    Extreme convective events in the troposphere not only have immediate impacts on the surface, but they can also influence the dynamics and composition of the lower stratosphere (LS). One major impact is the moistening of the LS by overshooting convection. This effect plays a crucial role in climate feedback, as small changes of water vapor in the upper troposphere and lower stratosphere (UTLS) have a large impact on the radiative budget of the atmosphere. In this case study, we investigate water vapor injections into the LS by two consecutive convective events in the European mid-latitudes within the framework of the MOSES (Modular Observation Solutions for Earth Systems) measurement campaign during the early summer of 2019. Using balloon-borne instruments, measurements of convective water vapor injection into the stratosphere were performed. Such measurements with a high vertical resolution are rare. The magnitude of the stratospheric water vapor reached up to 12.1 ppmv (parts per million by volume), with an estimated background value of 5 ppmv. Hence, the water vapor enhancement reported here is of the same order of magnitude as earlier reports of water vapor injection by convective overshooting over North America. However, the overshooting took place in the extratropical stratosphere over Europe and has a stronger impact on long-term water vapor mixing ratios in the stratosphere compared to the monsoon-influenced region in North America. At the altitude of the measured injection, a sharp drop in a local ozone enhancement peak makes the observed composition of air very unique with high ozone up to 650 ppbv (parts per billion by volume) and high water vapor up to 12.1 ppmv. ERA-Interim does not show any signal of the convective overshoot, the water vapor values measured by the Microwave Limb Sounder (MLS) in the LS are lower than the in situ observations, and the ERA5 overestimated water vapor mixing ratios. Backward trajectories of the measured injected air masses reveal that the moistening of the LS took place several hours before the balloon launch. This is in good agreement with the reanalyses, which shows a strong change in the structure of isotherms and a sudden and short-lived increase in potential vorticity at the altitude and location of the trajectory. Similarly, satellite data show low cloud-top brightness temperatures during the overshooting event, which indicates an elevated cloud top height

    "Zyflex": next generation plasma chamber for complex plasma research in space

    Get PDF
    Complex plasmas consist of highly charged micrometer-sized grains injected into a low temperature noble gas discharge. Since gravity has a strong influence on the particle system, experiments under microgravity conditions are essential. A novel plasma chamber (the "Zyflex" chamber) has been designed for complex plasma research in a future facility on the International Space Station (ISS). The cylindrical, radiofrequency driven discharge device includes a variety of innovations that for example allow to flexibly adjust plasma parameters and its volume. Compared to former chambers used in space based complex plasma facilities, it also supports much larger particle systems and can be operated at much lower gas pressures, thus reducing the damping of particle motion considerably. Beyond the technical description and particle-incell (PIC) simulation based characterization of the plasma vessel, we show sample results from experiments performed with this device in the lab as well as during parabolic flights. Further, an outlook on the future ISS facility COMPACT with the Zyflex chamber at its core is given. This work is funded by DLR/BMWi (FKZ 50WM1441)

    Ekoplasma - The Future of Complex Plasma Research in aboard the International Space Station

    Get PDF
    Ekoplasma is a joint German-Russian project, developing the future multi-purpose laboratory for the investigation of complex plasmas under microgravity conditions aboard the International Space Station (ISS). Complex plasmas are low-temperature plasmas, consisting of neutral gas atoms, ions, electrons and micro-meter sized particles as an additional component. The particles become charged in the plasma and as a result of their mutual repulsion form an optically thin cloud that can be studied in its full spatial and dynamical complexity on the granularity scale of each particle by optical cameras. Therefore, complex plasmas allow fundamental investigations down to the kinetic level of individual particles also for a wide field of interdisciplinary topics in classical condensed matter physics. Since gravity prevents the formation of large, homogeneous systems on earth, research on the ISS is essential, and Ekoplasma will follow in a line of successful preceding experiments aboard the ISS: PKE-Nefedov, PK-3 Plus and the currently operating PK-4 facility. Ekoplasma is planned to be launched to the ISS in 2022, and it will cover a wide range of research topics such as solidification and melting, phase separation in binary systems, the transition to turbulence, active matter or electrorheology

    Real-Time Particle Tracking in Complex Plasmas

    No full text

    The implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species

    Get PDF
    Lagrangian transport schemes have proven to be useful tools for modelling stratospheric trace gas transport since they are less diffusive than classical Eulerian schemes and therefore especially well suited for maintaining steep tracer gradients. Here, we present the implementation of the full-Lagrangian transport core of the Chemical Lagrangian Model of the Stratosphere (CLaMS) into the ECHAM/MESSy Atmospheric Chemistry model (EMAC). We performed a 10-year time-slice simulation to evaluate the coupled model system EMAC/CLaMS. Simulated zonal mean age of air distributions are compared to age of air derived from airborne measurements, showing a good overall representation of the stratospheric circulation. Results from the new Lagrangian transport scheme are compared to tracer distributions calculated with the standard flux-form semi-Lagrangian (FFSL) transport scheme in EMAC. The differences in the resulting tracer distributions are most pronounced in the regions of strong transport barriers. The polar vortices are presented as an example for isolated air masses which are surrounded by a strong transport barrier and simulated trace gas distributions are compared to satellite measurements. The analysis of CFC-11, N2O, CH4, and age of air in the polar vortex regions shows that the CLaMS Lagrangian transport scheme produces a stronger, more realistic transport barrier at the edge of the polar vortex than the FFSL transport scheme of EMAC. Differences in simulated age of air range up to 1 year in the Arctic polar vortex in late winter/early spring. The new coupled model system EMAC/CLaMS thus constitutes a suitable tool for future model studies of stratospheric tracer transport
    corecore