75 research outputs found

    Galactoglucomannan-rich hemicellulose extract from Norway spruce (Picea abies) exerts beneficial effects on chronic prostatic inflammation and lower urinary tract symptoms in vivo

    Get PDF
    Galactoglucomannan (GGM) is the main hemicellulose class in wood of coniferous trees and could be potentially utilized as a possible health-promoting substance for food and pharmaceutical industry. Our aim was to evaluate effects of orally administered GGM-rich extract from Norway spruce in a rat model of chronic prostatitis associated with lower urinary tract symptoms (LUTS). Prostatic inflammation and LUTS was induced in male rats using testosterone and 17 beta-estradiol exposure for 18 weeks. Rats were treated with 2% GGM dissolved in drinking water during weeks 13-18. Pelvic pain response, LUT function and histopathological evaluation of the prostate were assessed. The results show that hormonal exposure induced LUTS seen as decreased urine flow rate, increased bladder pressure, voiding times, bladder capacity and residual urine volumes. GGM had positive effects on urodynamical parameters by decreasing the basal bladder pressure, increasing the urine flow rate and volume, reducing the residual volume and increasing micturition intervals. GGM reduced the extent of the hormone exposure-induced prostatic inflammation. Increase of pelvic pain induced by hormone exposure was only slightly affected by GGM treatment. The results suggest that orally administered GGM may have potential usage for improving lower urinary tract function associated with chronic prostatic inflammation. (C) 2017 Elsevier B.V. All rights reserved

    Wear of polycrystalline boron nitride tool during the friction stir welding of steel

    Get PDF
    The wear issue of a polycrystalline boron nitride (PCBN) tools during the friction stir welding of two grades of steel, DH36 and EH46, was studied. Two welding traverse and tool rotational speeds were used when welding the DH36 steel. A low tool speed (200RPM, 100 mm/min) and a high tool speed (550RPM, 400 mm/min) were denoted by W1D and W2D, respectively. Nine welding conditions were applied to the welding of EH46 steel plate including seven plunge/dwell trials (W1E–W7E) and two steady-state trials (W8E and W9E). SEM–EDS and XRD tests were applied in order to reveal the boronitride (BN) particles inside the welded joints, and the percentage (%) of BN was calculated according to the standard quantitative metallographic technique. The findings showed that tool wear increases when the tool rotational speed increases as a result of binder softening which is a function of the peak temperature (exceeds 1250 °C) at the tool/workpiece interface. When considering the EH46 steel trials, it was found that an increase in the tool traverse speed in friction stir welding caused a significant tool wear with 4.4% of BN in the top of the stirred zone of W9E compared to 1.1% volume fraction of BN in W8E which was attributed to the higher thermomechanical action on the PCBN tool surface. Tool wear was also found to increase with an increase in tool plunge depth as a result of the higher contact between the surface of friction stir welding tool and the workpiece

    Thermo-Mechanical Effect on Poly Crystalline Boron Nitride Tool Life During Friction Stir Welding (Dwell Period)

    Get PDF
    Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool’s binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model

    Numerical Simulations of Magnetoacoustic-Gravity Waves in the Solar Atmosphere

    Get PDF
    We investigate the excitation of magnetoacoustic-gravity waves generated from localized pulses in the gas pressure as well as in vertical component of velocity. These pulses are initially launched at the top of the solar photosphere that is permeated by a weak magnetic field. We investigate three different configurations of the background magnetic field lines: horizontal, vertical and oblique to the gravitational force. We numerically model magnetoacoustic-gravity waves by implementing a realistic (VAL-C) model of solar temperature. We solve two-dimensional ideal magnetohydrodynamic equations numerically with the use of the FLASH code to simulate the dynamics of the lower solar atmosphere. The initial pulses result in shocks at higher altitudes. Our numerical simulations reveal that a small-amplitude initial pulse can produce magnetoacoustic-gravity waves, which are later reflected from the transition region due to the large temperature gradient. The atmospheric cavities in the lower solar atmosphere are found to be the ideal places that may act as a resonator for various oscillations, including their trapping and leakage into the higher atmosphere. Our numerical simulations successfully model the excitation of such wave modes, their reflection and trapping, as well as the associated plasma dynamics

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH

    Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates

    Get PDF
    NOTICE: This is the peer reviewed version of the following book chapter: Varela J. A., González-Rodríguez C., Saá C. (2014). Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates. In: Dixneuf P., Bruneau C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48, pp. 237-287. Springer, Cham. [doi: 10.1007/3418_2014_81]. This article may be used for non-commercial purposes in accordance with Springer Verlag Terms and Conditions for self-archiving.Vinylidenes are high-energy tautomers of terminal alkynes and they can be stabilized by coordination with transition metals. The resulting metal-vinylidene species have interesting chemical properties that make their reactivity different to that of the free and metal π-coordinated alkynes: the carbon α to the metal is electrophilic whereas the β carbon is nucleophilic. Ruthenium is one of the most commonly used transition metals to stabilize vinylidenes and the resulting species can undergo a range of useful transformations. The most remarkable transformations are the regioselective anti-Markovnikov addition of different nucleophiles to catalytic ruthenium vinylidenes and the participation of the π system of catalytic ruthenium vinylidenes in pericyclic reactions. Ruthenium vinylidenes have also been employed as precatalysts in ring closing metathesis (RCM) or ring opening metathesis polymerization (ROMP). Allenylidenes could be considered as divalent radicals derived from allenes. In a similar way to vinylidenes, allenylidenes can be stabilized by coordination with transition metals and again ruthenium is one of the most widely used metals. Metalallenylidene complexes can be easily obtained from terminal propargylic alcohols by dehydration of the initially formed metal-hydroxyvinylidenes, in which the reactivity of these metal complexes is based on the electrophilic nature of Cα and Cγ, while Cβ is nucleophilic. Catalytic processes based on nucleophilic additions and pericyclic reactions involving the π system of ruthenium allenylidenes afford interesting new structures with high selectivity and atom economy

    Teaching open and reproducible scholarship: a critical review of the evidence base for current pedagogical methods and their outcomes

    Get PDF
    In recent years, the scientific community has called for improvements in the credibility, robustness and reproducibility of research, characterized by increased interest and promotion of open and transparent research practices. While progress has been positive, there is a lack of consideration about how this approach can be embedded into undergraduate and postgraduate research training. Specifically, a critical overview of the literature which investigates how integrating open and reproducible science may influence student outcomes is needed. In this paper, we provide the first critical review of literature surrounding the integration of open and reproducible scholarship into teaching and learning and its associated outcomes in students. Our review highlighted how embedding open and reproducible scholarship appears to be associated with (i) students' scientific literacies (i.e. students’ understanding of open research, consumption of science and the development of transferable skills); (ii) student engagement (i.e. motivation and engagement with learning, collaboration and engagement in open research) and (iii) students' attitudes towards science (i.e. trust in science and confidence in research findings). However, our review also identified a need for more robust and rigorous methods within pedagogical research, including more interventional and experimental evaluations of teaching practice. We discuss implications for teaching and learning scholarship
    • …
    corecore