67 research outputs found

    A Sex-Specific Metabolite Identified in a Marine Invertebrate Utilizing Phosphorus-31 Nuclear Magnetic Resonance

    Get PDF
    Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus) contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female) proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry

    Angiographically borderline left main coronary artery lesions: correlation of transthoracic doppler echocardiography and intravascular ultrasound: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>the clinical decision making could be difficult in patients with borderline lesions (visually assessed stenosis severity of 30 to 50%) of the left main coronary artery (LM). The aim of the study was to evaluate the relationship between transthoracic Doppler (TTDE) peak diastolic flow velocity (PDV) and intravascular ultrasound (IVUS) measurements in the assessment of angiographically borderline LM lesions.</p> <p>Methods</p> <p>27 patients (mean age 64 ± 8 years, 21 males) with borderline LM stenosis referred for IVUS examination were included in the study. We performed standard IVUS with minimal lumen area (MLA) and plaque burden (PB) measurement and routine quantitative coronary angiography (QCA) with diameter stenosis (%DS) and area stenosis (%AS) assessment in all. During TTDE, resting PDV was measured in the LM.</p> <p>Results</p> <p>interpretable Doppler signal could be obtained in 24 patients (88% feasibility); therefore these patients entered the final analysis. MLA was 7.1 ± 2.7 mm<sup>2</sup>. TTDE measured PDV correlated significantly with IVUS-derived MLA (r = -0.46, p < 0.05) and plaque burden (r = 0.51, p < 0.05). Using a velocity cut-off of 112 cm/sec TTDE showed a 92% sensitivity and 62% specificity to identify IVUS-significant (MLA < 6 mm<sup>2</sup>) LM stenosis.</p> <p>Conclusion</p> <p>In angiographically borderline LM disease, resting PDV from transthoracic echocardiography is increased in presence of increased plaque burden by IVUS. TTDE evaluation might be a useful adjunct to other invasive and non-invasive methods in the assessment of borderline LM lesions. Further, large scale studies are needed to establish the exact cut-off value of PDV for routine clinical application.</p

    Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer

    Get PDF
    Only a few papers have been published concerning the incidence and outcome of patients with a pathological complete response after cytotoxic treatment in breast cancer. The purpose of this retrospective study was to assess the outcome of patients found to have a pathological complete response in both the breast and axillary lymph nodes after neoadjuvant chemotherapy for operable breast cancer. Our goal was also to determine whether the residual pathological size of the tumour in breast could be correlated with pathological node status. Between 1982 and 2000, 451 consecutive patients were registered into five prospective phase II trials. After six cycles, 396 patients underwent surgery with axillary dissection for 277 patients (69.9%). Pathological response was evaluated according to the Chevallier's classification. At a median follow-up of 8 years, survival was analysed as a function of pathological response. A pathological complete response rate was obtained in 60 patients (15.2%) after induction chemotherapy. Breast tumour persistence was significantly related to positive axillary nodes (P=5.10−6). At 15 years, overall survival and disease-free survival rates were significantly higher in the group who had a pathological complete response than in the group who had less than a pathological complete response (P=0.047 and P=0.024, respectively). In the absence of pathological complete response and furthermore when there is a notable remaining pathological disease, axillary dissection is still important to determine a major prognostic factor and subsequently, a second non cross resistant adjuvant regimen or high dose chemotherapy could lead to a survival benefit

    Adenylyl Cyclase α and cAMP Signaling Mediate Plasmodium Sporozoite Apical Regulated Exocytosis and Hepatocyte Infection

    Get PDF
    Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of rodent (P. yoelii and P. berghei) and human (P. falciparum) Plasmodium species. We have generated P. berghei parasites deficient in adenylyl cyclase α (ACα), a gene containing regions with high homology to adenylyl cyclases. PbACα-deficient sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte infectivity in vivo. These effects are specific to ACα, as re-introduction of ACα in deficient parasites resulted in complete recovery of exocytosis and infection. Our findings indicate that ACα and increases in cAMP levels are required for sporozoite apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes

    Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

    Get PDF
    The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described

    Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis

    Get PDF
    This article has an erratum: http://dx.doi.org/10.1007/s10549-011-1654-4Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, an understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidences for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the L-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for L-serine in mammalian tissues. Consistently, we observed that the proliferation of MDAMB- 231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that L-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of L-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.Peer reviewe
    corecore