4,212 research outputs found

    Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery

    Get PDF
    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    The effects of transcutaneous spinal cord stimulation delivered with and without high-frequency modulation on spinal and corticospinal excitability

    Get PDF
    Transcutaneous spinal cord stimulation (TSCS) has been shown to improve motor recovery in people with spinal cord injury (SCI). Some groups deliver TSCS modulated with a kHz-frequency (TSCS–kHz); the intensity used for TSCS–kHz is usually set based on the motor threshold for TSCS, even though TSCS–kHz threshold is considerably higher than TSCS. As a result, TSCS–kHz interventions tend to be delivered at low intensities with respect to the motor threshold (~40%). In this study, we compared the effects of sub-threshold TSCS and TSCS–kHz, when delivered at similar intensity relative to their own motor threshold. Experiment I compared the after-effects of 20 min of sub-threshold (40% threshold) TSCS and TSCS–kHz on spinal and corticospinal excitability in able-bodied participants. Experiment II assessed the dose–response relationship of delivering short (10-pulse) trains of TSCS and TSCS–kHz at three different current intensities relative to the threshold (40%, 60%, and 80%). Experiment I found that 20 min of TSCS–kHz at a 40% threshold decreased posterior root reflex amplitude (p < 0.05), whereas TSCS did not. In experiment II, motor-evoked potential (MEP) amplitude increased following short trains of TSCS and TSCS–kHz of increasing intensity. MEP amplitude was significantly greater for TSCS–kHz compared with TSCS when delivered at 80% of the threshold (p < 0.05). These results suggest that TSCS and TSCS–kHz have different effects when delivered at similar intensity relative to their own threshold; both for immediate effects on corticospinal excitability and following prolonged stimulation on spinal excitability. These different effects may be utilized for optimal rehabilitation in people with SCI

    Ultra-low carrier concentration and surface dominant transport in Sb-doped Bi2Se3 topological insulator nanoribbons

    Full text link
    A topological insulator is a new state of matter, possessing gapless spin-locking surface states across the bulk band gap which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state via electron transport measurement. Here we report surface state dominated transport in Sb-doped Bi2Se3 nanoribbons with very low bulk electron concentrations. In the nanoribbons with sub-10nm thickness protected by a ZnO layer, we demonstrate complete control of their top and bottom surfaces near the Dirac point, achieving the lowest carrier concentration of 2x10^11/cm2 reported in three-dimensional (3D) topological insulators. The Sb-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.Comment: 5 pages, 4 figures, 1 tabl

    Discovery (theoretical prediction and experimental observation) of a large-gap topological-insulator class with spin-polarized single-Dirac-cone on the surface

    Get PDF
    Recent theories and experiments have suggested that strong spin-orbit coupling effects in certain band insulators can give rise to a new phase of quantum matter, the so-called topological insulator, which can show macroscopic entanglement effects. Such systems feature two-dimensional surface states whose electrodynamic properties are described not by the conventional Maxwell equations but rather by an attached axion field, originally proposed to describe strongly interacting particles. It has been proposed that a topological insulator with a single spin-textured Dirac cone interfaced with a superconductor can form the most elementary unit for performing fault-tolerant quantum computation. Here we present an angle-resolved photoemission spectroscopy study and first-principle theoretical calculation-predictions that reveal the first observation of such a topological state of matter featuring a single-surface-Dirac-cone realized in the naturally occurring Bi2_2Se3_3 class of materials. Our results, supported by our theoretical predictions and calculations, demonstrate that undoped compound of this class of materials can serve as the parent matrix compound for the long-sought topological device where in-plane surface carrier transport would have a purely quantum topological origin. Our study further suggests that the undoped compound reached via n-to-p doping should show topological transport phenomena even at room temperature.Comment: 3 Figures, 18 pages, Submitted to NATURE PHYSICS in December 200

    Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3

    Full text link
    Topological insulators represent a new state of quantum matter attractive to both fundamental physics and technological applications such as spintronics and quantum information processing. In a topological insulator, the bulk energy gap is traversed by spin-momentum locked surface states forming an odd number of surface bands that possesses unique electronic properties. However, transport measurements have often been dominated by residual bulk carriers from crystal defects or environmental doping which mask the topological surface contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological insulator system to manipulate bulk conductivity by varying the Bi/Sb composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as topological insulators for the entire composition range by angle resolved photoemission spectroscopy (ARPES) measurements and ab initio calculations. Additionally, we observe a clear ambipolar gating effect similar to that observed in graphene using nanoplates of (BixSb1-x)2Te3 in field-effect-transistor (FET) devices. The manipulation of carrier type and concentration in topological insulator nanostructures demonstrated in this study paves the way for implementation of topological insulators in nanoelectronics and spintronics.Comment: 7 pages, 4 figure

    Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3

    Full text link
    Topological insulators are a recently discovered class of materials with fascinating properties: While the inside of the solid is insulating, fundamental symmetry considerations require the surfaces to be metallic. The metallic surface states show an unconventional spin texture, electron dynamics and stability. Recently, surfaces with only a single Dirac cone dispersion have received particular attention. These are predicted to play host to a number of novel physical phenomena such as Majorana fermions, magnetic monopoles and unconventional superconductivity. Such effects will mostly occur when the topological surface state lies in close proximity to a magnetic or electric field, a (superconducting) metal, or if the material is in a confined geometry. Here we show that a band bending near to the surface of the topological insulator Bi2_2Se3_3 gives rise to the formation of a two-dimensional electron gas (2DEG). The 2DEG, renowned from semiconductor surfaces and interfaces where it forms the basis of the integer and fractional quantum Hall effects, two-dimensional superconductivity, and a plethora of practical applications, coexists with the topological surface state in Bi2_2Se3_3. This leads to the unique situation where a topological and a non-topological, easily tunable and potentially superconducting, metallic state are confined to the same region of space.Comment: 12 pages, 3 figure

    Thermal Re-emission Model

    Get PDF
    Starting from a continuum description, we study the non-equilibrium roughening of a thermal re-emission model for etching in one and two spatial dimensions. Using standard analytical techniques, we map our problem to a generalized version of an earlier non-local KPZ (Kardar-Parisi-Zhang) model. In 2+1 dimensions, the values of the roughness and the dynamic exponents calculated from our theory go like α≈z≈1 \alpha \approx z \approx 1 and in 1+1 dimensions, the exponents resemble the KPZ values for low vapor pressure, supporting experimental results. Interestingly, Galilean invariance is maintained althrough.Comment: 4 pages, minor textual corrections and typos, accepted in Physical Review B (rapid
    • …
    corecore