5 research outputs found

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    Get PDF
    Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop.info:eu-repo/semantics/acceptedVersio

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    Get PDF
    Extended data and supplementary information are available at https://doi.org/10.1038/s41588-019-0522-8Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop

    Transcriptome analysis clarified genes involved in resistance to Phytophthora capsici in melon.

    No full text
    Phytophthora blight caused by Phytophthora capsici is a devastating disease for melon plant. However, the underlying resistance mechanisms are still poorly understood. In this study, the transcriptome differences between the resistant ZQK9 and susceptible E31 at 0, 3, and 5 days post-inoculation (dpi) were identified by RNA-seq. A total of 1,195 and 6,595 differentially expressed genes (DEGs) were identified in ZQK9 and E31, respectively. P. capsici infection triggered massive transcript changes in the inoculated tissues. Genes related to plant defense responses were activated, which was reflected by a lot of up-regulated DEGs involved in pathogenesis-related (PR) genes, hormones biosynthesis and signal transduction, secondary metabolites biosynthesis and cell wall modification in resistant ZQK9. The dataset generated in this study may provide a basis for identifying candidate resistant genes in melon against P. capsici and lay a foundation for further research on the molecular mechanisms

    A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits

    No full text
    Extended data and supplementary information are available at https://doi.org/10.1038/s41588-019-0522-8Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa. We detected two independent sets of domestication sweeps, resulting in diverse characteristics of the two subspecies melo and agrestis during melon breeding. Genome-wide association studies for 16 agronomic traits identified 208 loci significantly associated with fruit mass, quality and morphological characters. This study sheds light on the domestication history of melon and provides a valuable resource for genomics-assisted breeding of this important crop
    corecore