15 research outputs found

    cp_whole.nex

    No full text
    whole cp gonome matrix for the phylogenetic tree reconstructio

    CDS.fas.nex

    No full text
    CDs matrix for the phylogenetic tree reconstructio

    Data from: Speciation history of a species complex of Primulina eburnea (Gesneriaceae) from limestone karsts of south China, a biodiversity hotspot

    No full text
    Limestone karsts in southern China are characterized by high edaphic and topographic heterogeneity and host high levels of species richness and endemism. However, the evolutionary mechanisms for generating such biodiversity remain poorly understood. Here, we performed species delimitation, population genetic analyses, simulations of gene flow, and analyses of floral morphological traits to infer the geographic history of speciation in a species complex of Primulina eburnea from limestone karsts of south China. Using Bayesian species delimitation, we determined that there are seven distinct species that correspond well to the putative morphological species. Species-tree reconstruction, Structure and Neighbour-Net analyses all recovered four lineages in agreement with currently species geographic boundaries. High levels of genetic differentiation were observed both within and among species. Isolation–migration coalescent analysis provides evidence for significant but low gene flow among species. Approximate Bayesian computation (ABC) analysis supports a scenario of historical gene flow rather than recent contemporary gene flow for most species divergences. Finally, we found no evidence of divergent selection contributing to population differentiation of a suite of flower traits. These results support the prevalence of allopatric speciation and highlight the role of geographic isolation in the diversification process. At small geographic scales, limited hybridization occurred in the past between proximate populations but did not eliminate species boundaries. We conclude that limited gene flow might have been the predominant evolutionary force in promoting population differentiation and speciation

    A comparison of chloroplast genome sequences in Aconitum (Ranunculaceae): a traditional herbal medicinal genus

    No full text
    The herbal medicinal genus Aconitum L., belonging to the Ranunculaceae family, represents the earliest diverging lineage within the eudicots. It currently comprises of two subgenera, A. subgenus Lycoctonum and A. subg. Aconitum. The complete chloroplast (cp) genome sequences were characterized in three species: A. angustius, A. finetianum, and A. sinomontanum in subg. Lycoctonum and compared to other Aconitum species to clarify their phylogenetic relationship and provide molecular information for utilization of Aconitum species particularly in Eastern Asia. The length of the chloroplast genome sequences were 156,109 bp in A. angustius, 155,625 bp in A. finetianum and 157,215 bp in A. sinomontanum, with each species possessing 126 genes with 84 protein coding genes (PCGs). While genomic rearrangements were absent, structural variation was detected in the LSC/IR/SSC boundaries. Five pseudogenes were identified, among which Ψrps19 and Ψycf1 were in the LSC/IR/SSC boundaries, Ψrps16 and ΨinfA in the LSC region, and Ψycf15 in the IRb region. The nucleotide variability (Pi) of Aconitum was estimated to be 0.00549, with comparably higher variations in the LSC and SSC than the IR regions. Eight intergenic regions were revealed to be highly variable and a total of 58–62 simple sequence repeats (SSRs) were detected in all three species. More than 80% of SSRs were present in the LSC region. Altogether, 64.41% and 46.81% of SSRs are mononucleotides in subg. Lycoctonum and subg. Aconitum, respectively, while a higher percentage of di-, tri-, tetra-, and penta- SSRs were present in subg. Aconitum. Most species of subg. Aconitum in Eastern Asia were first used for phylogenetic analyses. The availability of the complete cp genome sequences of these species in subg. Lycoctonum will benefit future phylogenetic analyses and aid in germplasm utilization in Aconitum species

    Speciation history of a species complex of Primulina eburnea (Gesneriaceae) from limestone karsts of southern China, a biodiversity hot spot

    No full text
    Limestone karsts in southern China are characterized by high edaphic and topographic heterogeneity and host high levels of species richness and endemism. However, the evolutionary mechanisms for generating such biodiversity remain poorly understood. Here, we performed species delimitation, population genetic analyses, simulations of gene flow and analyses of floral morphological traits to infer the geographic history of speciation in a species complex of Primulina eburnea from limestone karsts of southern China. Using Bayesian species delimitation, we determined that there are seven distinct species that correspond well to the putative morphological species. Species tree reconstruction, Structure and Neighbor-Net analyses all recovered four lineages in agreement with currently species geographic boundaries. High levels of genetic differentiation were observed both within and among species. Isolation-migration coalescent analysis provides evidence for significant but low gene flow among species. Approximate Bayesian computation (ABC) analysis supports a scenario of historical gene flow rather than recent contemporary gene flow for most species divergences. Finally, we found no evidence of divergent selection contributing to population differentiation of a suite of flower traits. These results support the prevalence of allopatric speciation and highlight the role of geographic isolation in the diversification process. At small geographic scales, limited hybridization occurred in the past between proximate populations but did not eliminate species boundaries. We conclude that limited gene flow might have been the predominant evolutionary force in promoting population differentiation and speciation

    Two new combinations in Oreocharis (Gesneriaceae) based on morphological, molecular and cytological evidence

    No full text
    The newly-circumscribed genus Oreocharis is recently enlarged by incorporating ten other genera with high floral diversity. In this study, our morphological, molecular and cytological evidence supports our adding two species from other two different genera (Boeica and Beccarinda) to Oreocharis. The special corolla shape (campanulate or flat-faced) and related short filament of these two new combinations, Oreocharis guileana and O. baolianis, further enrich the diversity of floral characters of the enlarged Oreocharis. Meanwhile, some supplementary and amended descriptions of these two species are made here. Our morphological, molecular and geographical data indicate that O. guileana is related to O. pilosopetiolata to a certain extent. For O. baolianis, however, our current dataset does not allow conclusions on the species relationship within Oreocharis

    Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae

    No full text
    The subfamily Caesalpinioideae of the Fabaceae has long been recognized as non-monophyletic due to its controversial phylogenetic relationships. Cercis chuniana, endemic to China, is a representative species of Cercis L. placed within Caesalpinioideae in the older sense. Here, we report the whole chloroplast (cp) genome of C. chuniana and compare it to six other species from the Caesalpinioideae. Comparative analyses of gene synteny and simple sequence repeats (SSRs), as well as estimation of nucleotide diversity, the relative ratios of synonymous and nonsynonymous substitutions (dn/ds), and Kimura 2-parameter (K2P) interspecific genetic distances, were all conducted. The whole cp genome of C. chuniana was found to be 158,433 bp long with a total of 114 genes, 81 of which code for proteins. Nucleotide substitutions and length variation are present, particularly at the boundaries among large single copy (LSC), inverted repeat (IR) and small single copy (SSC) regions. Nucleotide diversity among all species was estimated to be 0.03, the average dn/ds ratio 0.3177, and the average K2P value 0.0372. Ninety-one SSRs were identified in C. chuniana, with the highest proportion in the LSC region. Ninety-seven species from the old Caesalpinioideae were selected for phylogenetic reconstruction, the analysis of which strongly supports the monophyly of Cercidoideae based on the new classification of the Fabaceae. Our study provides genomic information for further phylogenetic reconstruction and biogeographic inference of Cercis and other legume species
    corecore