75 research outputs found

    Morphology and hemodynamics in isolated common iliac artery aneurysms impacts proximal aortic remodeling

    Get PDF
    Objective- Isolated common iliac artery aneurysms (CIAA) are rare. Their prognosis and influence on aortoiliac blood flow and remodeling are unclear. We evaluated the hypotheses that morphology at and distal to the aortic bifurcation, together with the associated hemodynamic changes, influence both the natural history of CIAA and proximal aortic remodeling. Approach and Results- Twenty-five isolated CIAAs (15 intact, 10 ruptured), in 23 patients were reconstructed and analyzed with computational fluid dynamics: all showed abnormal flow. Then we studied a series of 24 hypothetical aortoiliac geometries in silico with varying abdominal aortic deflection and aortic bifurcation angles: key findings were assessed in an independent validation cohort of 162 patients. Wall shear stress in isolated unilateral CIAAs was lower than the contralateral common iliac artery, 0.38±0.33 Pa versus 0.61±0.24 Pa, inversely associated with CIAA diameter ( P<0.001) and morphology (high shear stress in variants distal to a sharp kink). Rupture usually occurred in regions of elevated low and oscillatory shear with a wide aortic bifurcation angle. Abdominal aortas deflected towards the CIAA for most unilateral isolated CIAAs (14/21). In silico, wider bifurcation angles created high focal regions of low and oscillatory shear in the common iliac artery. The associations of unilateral CIAA with aortic deflection and common iliac artery diameter with bifurcation angle were confirmed in the validation cohort. Conclusions- Decreasing wall shear stress is strongly associated with CIAA progression (larger aneurysms and rupture), whereas abnormal blood flow in the CIAA seems to promote proximal aortic remodeling, with adaptive lateral deflection of the abdominal aorta towards the aneurysmal side

    WP13-DAS02-T12 helium cooled divertor

    Get PDF

    Review of Available Data for Validation of Nuresim Two-Phase CFD Software Applied to CHF Investigations

    Get PDF
    The NURESIM Project of the 6th European Framework Program initiated the development of a new-generation common European Standard Software Platform for nuclear reactor simulation. The thermal-hydraulic subproject aims at improving the understanding and the predictive capabilities of the simulation tools for key two-phase flow thermal-hydraulic processes such as the critical heat flux (CHF). As part of a multi-scale analysis of reactor thermal-hydraulics, a two-phase CFD tool is developed to allow zooming on local processes. Current industrial methods for CHF mainly use the sub-channel analysis and empirical CHF correlations based on large scale experiments having the real geometry of a reactor assembly. Two-phase CFD is used here for understanding some boiling flow processes, for helping new fuel assembly design, and for developing better CHF predictions in both PWR and BWR. This paper presents a review of experimental data which can be used for validation of the two-phase CFD application to CHF investigations. The phenomenology of DNB and Dry-Out are detailed identifying all basic flow processes which require a specific modeling in CFD tool. The resulting modeling program of work is given and the current state-of-the-art of the modeling within the NURESIM project is presented
    corecore