63 research outputs found

    Etiology and factors associated with pneumonia in children under 5 years of age in Mali: A prospective case-control study

    Get PDF
    Background: There are very limited data on children with pneumonia in Mali. The objective was to assess the etiology and factors associated with community-acquired pneumonia in hospitalized children <5 years of age in Mali. Methods: A prospective hospital-based case-control study

    Accurate Strand-Specific Quantification of Viral RNA

    Get PDF
    The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR) assays are increasingly being used for this purpose, but the accuracy of these assays depends on the assumption that the amount of cDNA measured during the quantitative PCR (qPCR) step accurately reflects amounts of a specific viral RNA strand present in the RT reaction. To specifically test this assumption, we developed multiple ssqPCR assays for the positive-strand RNA virus o'nyong-nyong (ONNV) that were based upon the most prevalent ssqPCR assay design types in the literature. We then compared various parameters of the ONNV-specific assays. We found that an assay employing standard unmodified virus-specific primers failed to discern the difference between cDNAs generated from virus specific primers and those generated through false priming. Further, we were unable to accurately measure levels of ONNV (−) strand RNA with this assay when higher levels of cDNA generated from the (+) strand were present. Taken together, these results suggest that assays of this type do not accurately quantify levels of the anti-genomic strand present during RNA virus infectious cycles. However, an assay permitting the use of a tag-specific primer was able to distinguish cDNAs transcribed from ONNV (−) strand RNA from other cDNAs present, thus allowing accurate quantification of the anti-genomic strand. We also report the sensitivities of two different detection strategies and chemistries, SYBR® Green and DNA hydrolysis probes, used with our tagged ONNV-specific ssqPCR assays. Finally, we describe development, design and validation of ssqPCR assays for chikungunya virus (CHIKV), the recent cause of large outbreaks of disease in the Indian Ocean region

    CRISPR-CAS diversity in clinical salmonella enterica serovar typhi isolates from South Asian countries

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a global health concern and its treatment is problematic due to the rise in antimicrobial resistance (AMR). Rapid detection of patients infected with AMR positive S. Typhi is, therefore, crucial to prevent further spreading. Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes (CRISPR-Cas), is an adaptive immune system that initially was used for typing purposes. Later, it was discovered to play a role in defense against phages and plasmids, including ones that carry AMR genes, and, at present, it is being explored for its usage in diagnostics. Despite the availability of whole-genome sequences (WGS), very few studied the CRISPR-Cas system of S. Typhi, let alone in typing purposes or relation to AMR. In the present study, we analyzed the CRISPR-Cas system of S. Typhi using WGS data of 1059 isolates obtained from Bangladesh, India, Nepal, and Pakistan in combination with demographic data and AMR status. Our results reveal that the S. Typhi CRISPR loci can be classified into two groups: A (evidence level >2) and B (evidence level ≤2), in which we identified a total of 47 unique spacers and 15 unique direct repeats. Further analysis of the identified spacers and repeats demonstrated specific patterns that harbored significant associations with genotype, demographic characteristics, and AMR status, thus raising the possibility of their usage as biomarkers. Potential spacer targets were identified and, interestingly, the phage-targeting spacers belonged to the group-A and plasmid-targeting spacers to the group-B CRISPR loci. Further analyses of the spacer targets led to the identification of an S. Typhi protospacer adjacent motif (PAM) sequence, TTTCA/T. New cas-genes known as DinG, DEDDh, and WYL were also discovered in the S. Typhi genome. However, a specific variant of the WYL gene was only identified in the extensively drug-resistant (XDR) lineage from Pakistan and ciprofloxacin-resistant lineage from Bangladesh. From this work, we conclude that there are strong correlations between variations identified in the S. Typhi CRISPR-Cas system and endemic AMR positive S. Typhi isolates

    Growth Differentiation Factor 15 Is Induced by Hepatitis C Virus Infection and Regulates Hepatocellular Carcinoma-Related Genes

    Get PDF
    Liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) are commonly induced by chronic hepatitis C virus (HCV) infection. We aimed to identify and characterize the involvement of previously screened cytokine GDF15 in HCV pathogenesis. We examined the GDF15 expression after HCV infection both in vitro and in vivo. Cultured JFH-1 HCV was used to determine the GDF15 function on virus propagation. GDF15 overexpression and RNA interference were employed to profile the GDF15-regulated genes, signaling pathways and cell biology phenotypes. The mRNA expression and protein secretion of GDF15 was dramatically increased in HCV-infected hepatoma cells, which maybe a host response to viral proteins or infection-induced cell stress. Patients infected with HCV had an average 15-fold higher blood GDF15 level than that of healthy volunteers. Three HCC individuals in the HCV cohort showed extremely high GDF15 concentrations. Transfection or exogenously supplied GDF15 enhanced HCV propagation, whereas knockdown of endogenous GDF15 resulted in inhibition of virus replication. Overexpressed GDF15 led to Akt activation and the phosphorylation of Akt downstream targeted GSK-3β and Raf. Several HCC-related molecules, such as E-cadherin, β-catenin, Cyclin A2/B1/D1, were up-regulated by GDF15 stimulation in vitro. Overexpression of GDF15 in hepatoma cells resulted in increased DNA synthesis, promoted cell proliferation, and importantly enhanced invasiveness of the cells. In conclusion, these results suggest that an elevated serum GDF15 level is a potential diagnostic marker for viral hepatitis, and GDF15 may contribute to HCV pathogenesis by altering the signaling and growth of host cells

    Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi, is a global public health concern due to increasing antimicrobial resistance (AMR). Characterization of S Typhi genomes for AMR and the evolution of different lineages, especially in countries where typhoid fever is endemic such as Bangladesh, will help public health professionals to better design and implement appropriate preventive measures. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh during 1999 to 2013 and compared those sequences with data from a recent outbreak in Pakistan reported previously by E. J. Klemm, S. Shakoor, A. J. Page, F. N. Qamar, et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105-18), and a laboratory surveillance in Nepal reported previously by C. D. Britto, Z. A. Dyson, S. Duchene, M. J. Carter, et al. [PLoS Negl. Trop. Dis. 12(4):e0006408, 2018, https://doi.org/10.1371/journal.pntd.0006408]. WGS had high sensitivity and specificity for prediction of ampicillin, chloramphenicol, co-trimoxazole, and ceftriaxone AMR phenotypes but needs further impr

    Analysis of isolates from Bangladesh highlights multiple ways to carry resistance genes in Salmonella Typhi

    Get PDF
    Background: Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. Results: Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. Conclusions: Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR

    Characterization of hepatitis C RNA-containing particles from human liver by density and size

    Get PDF
    Hepatitis C virus (HCV) particles found in vivo are heterogeneous in density and size, but their detailed characterization has been restricted by the low titre of HCV in human serum. Previously, our group has found that HCV circulates in blood in association with very-low-density lipoprotein (VLDL). Our aim in this study was to characterize HCV RNA-containing membranes and particles in human liver by both density and size and to identify the subcellular compartment(s) where the association with VLDL occurs. HCV was purified by density using iodixanol gradients and by size using gel filtration. Both positive-strand HCV RNA (present in virus particles) and negative-strand HCV RNA (an intermediate in virus replication) were found with densities below 1.08 g ml−1. Viral structural and non-structural proteins, host proteins ApoB, ApoE and caveolin-2, as well as cholesterol, triglyceride and phospholipids were also detected in these low density fractions. After fractionation by size with Superose gel filtration, HCV RNA and viral proteins co-fractionated with endoplasmic reticulum proteins and VLDL. Fractionation on Toyopearl, which separates particles with diameters up to 200 nm, showed that 78 % of HCV RNA from liver was >100 nm in size, with a positive-/negative-strand ratio of 6 : 1. Also, 8 % of HCV RNA was found in particles with diameters between 40 nm and 70 nm and a positive-/negative-strand ratio of 45 : 1. This HCV was associated with ApoB, ApoE and viral glycoprotein E2, similar to viral particles circulating in serum. Our results indicate that the association between HCV and VLDL occurs in the liver

    Th1 Disabled Function in Response to TLR4 Stimulation of Monocyte-Derived DC from Patients Chronically-Infected by Hepatitis C Virus

    Get PDF
    Background: Lack of protective antibodies and inefficient cytotoxic responses are characteristics of chronic hepatitis C infection. A defect in dendritic cell (DC) function has thus been suspected, but this remains a controversial issue. Methods and Findings: Here we show that monocyte-derived DC (MoDC) from chronically-infected patients can mature in response to TLR1/2, TLR2/6 or TLR3 ligands. In contrast, when stimulated with the TLR4 ligand LPS, MoDC from patients show a profound defect in inducing IFNc secretion by allogeneic T cells. This defect is not due to defective phenotypic maturation or to the presence of HCV-RNA in DC or monocytes but is correlated to reduced IL-12 secretion by DC. Restoration of DC ability to stimulate IFNc secretion can be obtained by blocking MEK activation in DC, indicating that MEK/ ERK pathway is involved in the Th1 defect of MoDC. Monocytes from HCV patients present increased spontaneous secretion of cytokines and chemokines, especially MIP-1b. Addition of MIP-1b on healthy monocytes during differentiation results in DC that have Th1 defect characteristic of MoDC from HCV patients, suggesting that MIP-1b secretion by HCV monocytes participates in the Th1 defect of DC. Conclusions: Our data indicate that monocytes from HCV patients are activated in vivo. This interferes with their differentiation into DC, leading to deficient TLR4 signaling in these cells that are enable to induce a Th1 response. Thi

    Hepatitis C Virus Protects Human B Lymphocytes from Fas-Mediated Apoptosis via E2-CD81 Engagement

    Get PDF
    HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2). CD81 also participates to form a B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -CD81 engagement, here, human Burkitt's lymphoma cell line Raji cells and primary human B lymphocytes (PHB) were treated with HCV E2 protein and cell culture produced HCV particles (HCVcc), and then the related cell phenotypes were assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IκBα, enhanced the expression of anti-apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV pseudoparticle (HCVpp) and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production
    corecore