9 research outputs found

    Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence

    Get PDF
    Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS

    A common variation in HCN1 is associated with heart rate variability in schizophrenia

    No full text
    BackgroundThere is growing evidence for a shared genetic basis between schizophrenia risk and cardiovascular disease. Reduced efferent vagal activity, indexed by reduced heart rate variability (HRV), has been consistently described in patients with schizophrenia and may potentially contribute to the increased cardiovascular risk in these patients. In this study, we tested the hypothesis whether the established schizophrenia risk variant HCN1 rs16902086 (A > G) is associated with reduced HRV.MethodsWe analyzed the risk status of HCN1 rs16902086 (AG/GG vs. AA genotype) in 83 unmedicated patients with schizophrenia and 96 healthy controls and investigated genotype-related impacts on various HRV parameters.ResultsWe observed significantly increased resting heart rates and a marked decrease of vagal modulation in our patient cohort. Strikingly, HCN1 rs16902086 (A > G) was associated with reduced HRV parameters in patients only. A trend towards more pronounced HRV deviations was observed in homozygous (GG) compared to heterozygous patients (AG).ConclusionWe present first evidence for a genetic risk factor that is associated with decreased vagal modulation in unmedicated patients with schizophrenia. Moreover, our findings suggest that HCN1 might be involved in reduced vagal modulation and possibly in increased cardiac mortality in schizophrenia patients. Thus, our data indicate that reduced vagal modulation might be an endophenotype of schizophrenia

    Analysis of CACNA1C and KCNH2 Risk Variants on Cardiac Autonomic Function in Patients with Schizophrenia

    Get PDF
    Background: Cardiac autonomic dysfunction (CADF) is a major contributor to increased cardiac mortality in schizophrenia patients. The aberrant function of voltage-gated ion channels, which are widely distributed in the brain and heart, may link schizophrenia and CADF. In search of channel-encoding genes that are associated with both CADF and schizophrenia, CACNA1C and KCNH2 are promising candidates. In this study, we tested for associations between genetic findings in both genes and CADF parameters in schizophrenia patients whose heart functions were not influenced by psychopharmaceuticals. Methods: First, we searched the literature for single-nucleotide polymorphisms (SNPs) in CACNA1C and KCNH2 that showed genome-wide significant association with schizophrenia. Subsequently, we looked for such robust associations with CADF traits at these loci. A total of 5 CACNA1C SNPs and 9 KCNH2 SNPs were found and genotyped in 77 unmedicated schizophrenia patients and 144 healthy controls. Genotype-related impacts on heart rate (HR) dynamics and QT variability indices (QTvi) were analyzed separately in patients and healthy controls. Results: We observed significantly increased QTvi in unmedicated patients with CADF-associated risk in CACNA1C rs2283274 C and schizophrenia-associated risk in rs2239061 G compared to the non-risk allele in these patients. Moreover, unmedicated patients with previously identified schizophrenia risk alleles in KCNH2 rs11763131 A, rs3807373 A, rs3800779 C, rs748693 G, and 1036145 T showed increased mean HR and QTvi as compared to non-risk alleles. Conclusions: We propose a potential pleiotropic role for common variation in CACNA1C and KCNH2 associated with CADF in schizophrenia patients, independent of antipsychotic medication, that predisposes them to cardiac arrhythmias and premature death

    Mutation analysis of the SHOC2 gene in Noonan-like syndrome and in hematologic malignancies

    No full text
    Noonan syndrome is an autosomal dominant disease characterized by dysmorphic features, webbed neck, cardiac anomalies, short stature and cryptorchidism. It shows phenotypic overlap with Costello syndrome and cardio-facio-cutaneous (CFC) syndrome. Noonan syndrome and related disorders are caused by germline mutations in genes encoding molecules in the RAS/MAPK pathway. Recently, a gain-of-function mutation in SHOC2, p.S2G, has been identified as causative for a type of Noonan-like syndrome characterized by the presence of loose anagen hair. In order to understand the contribution of SHOC2 mutations to the clinical manifestations of Noonan syndrome and related disorders, we analyzed SHOC2 in 92 patients with Noonan syndrome and related disorders who did not exhibit PTPN11, KRAS, HRAS, BRAF, MAP2K1/2, SOS1 or RAF1 mutations. We found the previously identified p.S2G mutation in eight of our patients. We developed a rapid detection system to identify the p.S2G mutation using melting curve analysis, which will be a useful tool to screen for the apparently common mutation. All the patients with the p.S2G mutation showed short stature, sparse hair and atopic skin. Six of the mutation-positive patients showed severe mental retardation and easily pluckable hair, and one showed leukocytosis. No SHOC2 mutations were identified in leukemia cells from 82 leukemia patients. These results suggest that clinical manifestations in SHOC2 mutation-positive patients partially overlap with those in patients with typical Noonan or CFC syndrome and show that easily pluckable/loose anagen hair is distinctive in SHOC2 mutation-positive patients. Journal of Human Genetics (2010) 55, 801-809; doi:10.1038/jhg.2010.116; published online 30 September 201

    Sparseness, anti-sparseness and anything in between: The operating point of a neuron determines its computational repertoire

    Get PDF
    Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(−/−) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure
    corecore