374 research outputs found
Climate Factors Influencing Coccidioidomycosis Seasonality and Outbreaks
Although broad links between climatic factors and coccidioidomycosis have been established, the identification of simple and robust relationships linking climatic controls to seasonal timing and outbreaks of the disease has remained elusive. Using an adaptive data-oriented method for estimating date of exposure, in this article I analyze hypotheses linking climate and dust to fungal growth and dispersion, and evaluate their respective roles for Pima County, Arizona. Results confirm a strong bimodal disease seasonality that was suspected but not previously seen in reported data. Dispersion-related conditions are important predictors of coccidioidomycosis incidence during fall, winter, and the arid foresummer. However, precipitation during the normally arid foresummer 1.5–2 years before the season of exposure is the dominant predictor of the disease in all seasons, accounting for half of the overall variance. Cross-validated models combining antecedent and concurrent conditions explain 80% of the variance in coccidioidomycosis incidence
MFV Reductions of MSSM Parameter Space
The 100+ free parameters of the minimal supersymmetric standard model (MSSM)
make it computationally difficult to compare systematically with data,
motivating the study of specific parameter reductions such as the cMSSM and
pMSSM. Here we instead study the reductions of parameter space implied by using
minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with
a view towards systematically building in constraints on flavour-violating
physics. Within this framework the space of parameters is reduced by expanding
soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a
24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42
respectively), depending on the order kept in the expansion. We provide a
Bayesian global fit to data of the MSSM-30 parameter set to show that this is
manageable with current tools. We compare the MFV reductions to the
19-parameter pMSSM choice and show that the pMSSM is not contained as a subset.
The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs
boson and with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for
publication in JHE
D3-brane Potentials from Fluxes in AdS/CFT
We give a comprehensive treatment of the scalar potential for a D3-brane in a
warped conifold region of a compactification with stabilized moduli. By
studying general ultraviolet perturbations in supergravity, we systematically
incorporate `compactification effects' sourced by supersymmetry breaking in the
compact space. Significant contributions to the D3-brane potential, including
the leading term in the infrared, arise from imaginary anti-self-dual (IASD)
fluxes. For an arbitrary Calabi-Yau cone, we determine the most general IASD
fluxes in terms of scalar harmonics, then compute the resulting D3-brane
potential. Specializing to the conifold, we identify the operator dual to each
mode of flux, and for chiral operators we confirm that the potential computed
in the gauge theory matches the gravity result. The effects of four-dimensional
curvature, including the leading D3-brane mass term, arise directly from the
ten-dimensional equations of motion. Furthermore, we show that gaugino
condensation on D7-branes provides a local source for IASD flux. This flux
precisely encodes the nonperturbative contributions to the D3-brane potential,
yielding a promising ten-dimensional representation of four-dimensional
nonperturbative effects. Our result encompasses all significant contributions
to the D3-brane potential discussed in the literature, and does so in the
single coherent framework of ten-dimensional supergravity. Moreover, we
identify new terms with irrational scaling dimensions that were inaccessible in
prior works. By decoupling gravity in a noncompact configuration, then
systematically reincorporating compactification effects as ultraviolet
perturbations, we have provided an approach in which Planck-suppressed
contributions to the D3-brane effective action can be computed.Comment: 70 page
Secluded Dark Matter Coupled to a Hidden CFT
Models of secluded dark matter offer a variant on the standard WIMP picture
and can modify our expectations for hidden sector phenomenology and detection.
In this work we extend a minimal model of secluded dark matter, comprised of a
U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT.
This provides a technically natural explanation for the hierarchically small
mediator-scale, with hidden-sector confinement generating m_{gamma'}>0.
Furthermore, the thermal history of the universe can differ markedly from the
WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large
number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase
transition at temperatures T << M_{dm} after freeze out. The mediator allows
both the dark matter and the Standard Model to communicate with the CFT, thus
modifying the low-energy phenomenology and cosmic-ray signals from the secluded
sector.Comment: ~50p, 8 figs; v2 JHEP versio
Automatic Extraction of Nuclei Centroids of Mouse Embryonic Cells from Fluorescence Microscopy Images
Accurate identification of cell nuclei and their tracking using three dimensional (3D) microscopic images is a demanding task in many biological studies. Manual identification of nuclei centroids from images is an error-prone task, sometimes impossible to accomplish due to low contrast and the presence of noise. Nonetheless, only a few methods are available for 3D bioimaging applications, which sharply contrast with 2D analysis, where many methods already exist. In addition, most methods essentially adopt segmentation for which a reliable solution is still unknown, especially for 3D bio-images having juxtaposed cells. In this work, we propose a new method that can directly extract nuclei centroids from fluorescence microscopy images. This method involves three steps: (i) Pre-processing, (ii) Local enhancement, and (iii) Centroid extraction. The first step includes two variations: first variation (Variant-1) uses the whole 3D pre-processed image, whereas the second one (Variant-2) modifies the preprocessed image to the candidate regions or the candidate hybrid image for further processing. At the second step, a multiscale cube filtering is employed in order to locally enhance the pre-processed image. Centroid extraction in the third step consists of three stages. In Stage-1, we compute a local characteristic ratio at every voxel and extract local maxima regions as candidate centroids using a ratio threshold. Stage-2 processing removes spurious centroids from Stage-1 results by analyzing shapes of intensity profiles from the enhanced image. An iterative procedure based on the nearest neighborhood principle is then proposed to combine if there are fragmented nuclei. Both qualitative and quantitative analyses on a set of 100 images of 3D mouse embryo are performed. Investigations reveal a promising achievement of the technique presented in terms of average sensitivity and precision (i.e., 88.04% and 91.30% for Variant-1; 86.19% and 95.00% for Variant-2), when compared with an existing method (86.06% and 90.11%), originally developed for analyzing C. elegans images
Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells
Metals in Catalysis, Biomimetics & Inorganic Material
CMB Telescopes and Optical Systems
The cosmic microwave background radiation (CMB) is now firmly established as
a fundamental and essential probe of the geometry, constituents, and birth of
the Universe. The CMB is a potent observable because it can be measured with
precision and accuracy. Just as importantly, theoretical models of the Universe
can predict the characteristics of the CMB to high accuracy, and those
predictions can be directly compared to observations. There are multiple
aspects associated with making a precise measurement. In this review, we focus
on optical components for the instrumentation used to measure the CMB
polarization and temperature anisotropy. We begin with an overview of general
considerations for CMB observations and discuss common concepts used in the
community. We next consider a variety of alternatives available for a designer
of a CMB telescope. Our discussion is guided by the ground and balloon-based
instruments that have been implemented over the years. In the same vein, we
compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the
South Pole Telescope (SPT). CMB interferometers are presented briefly. We
conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and
Planck, to demonstrate a remarkable evolution in design, sensitivity,
resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1:
Telescopes and Instrumentatio
Autophagy–physiology and pathophysiology
“Autophagy” is a highly conserved pathway for degradation, by which wasted intracellular macromolecules are delivered to lysosomes, where they are degraded into biologically active monomers such as amino acids that are subsequently re-used to maintain cellular metabolic turnover and homeostasis. Recent genetic studies have shown that mice lacking an autophagy-related gene (Atg5 or Atg7) cannot survive longer than 12 h after birth because of nutrient shortage. Moreover, tissue-specific impairment of autophagy in central nervous system tissue causes massive loss of neurons, resulting in neurodegeneration, while impaired autophagy in liver tissue causes accumulation of wasted organelles, leading to hepatomegaly. Although autophagy generally prevents cell death, our recent study using conditional Atg7-deficient mice in CNS tissue has demonstrated the presence of autophagic neuron death in the hippocampus after neonatal hypoxic/ischemic brain injury. Thus, recent genetic studies have shown that autophagy is involved in various cellular functions. In this review, we introduce physiological and pathophysiological roles of autophagy
Activation of ERAD Pathway by Human Hepatitis B Virus Modulates Viral and Subviral Particle Production
Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR), through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing, mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study, we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues, EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing. Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins. Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected cells and facilitate the establishment of chronic infections
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
- …