6,762 research outputs found

    Cosmological Constraints on Horndeski Gravity in Light of GW170817

    Full text link
    The discovery of the electromagnetic counterpart to GW170817 severely constrains the tensor mode propagation speed, eliminating a large model space of Horndeski theory. We use the cosmic microwave background data from Planck and the joint analysis of the BICEP2/Keck Array and Planck, galaxy clustering data from the SDSS LRG survey, BOSS baryon acoustic oscillation data, and redshift space distortion measurements to place constraints on the remaining Horndeski parameters. We evolve the Horndeski parameters as power laws with both the amplitude and power law index free. We find a 95% CL upper bound on the present-day coefficient of the Hubble friction term in the cosmological propagation of gravitational waves is 2.38, whereas General Relativity gives 2 at all times. While an enhanced friction suppresses the amplitude of the reionization bump of the primordial B-mode power spectrum at <10\ell < 10, our result limits the suppression to be less than 0.8%. This constraint is primarily due to the scalar integrated Sachs-Wolfe effect in temperature fluctuations at low multipoles.Comment: 23 pages, 10 figures. Version accepted for publication in JCA

    Non-Gaussianities from isocurvature modes

    Full text link
    This contribution discusses isocurvature modes, in particular the non-Gaussianities of local type generated by these modes. Since the isocurvature transfer functions differ from the adiabatic one, the coexistence of a primordial isocurvature mode with the usual adiabatic mode leads to a rich structure of the angular bispectrum, which can be decomposed into six elementary bispectra. Future analysis of the CMB data will enable to measure their relative weights, or at least constrain them. Non-Gaussianity thus provides a new window on isocurvature modes. This is particularly relevant for some scenarios, such as those presented here, which generate isocurvature modes whose contribution in the power spectrum is suppressed, as required by present data, but whose contribution in the non-Gaussianities could be dominant and measurable.Comment: 8 pages, 2 figures; to appear in the Proceedings of COSGRAV-2012 (International Conference on Modern Perspectives of Cosmology and Gravitation), Indian Statistical Institute, Kolkata, India, February 7-11, 201

    Oscillations and instabilities of fast and differentially rotating relativistic stars

    Full text link
    We study non-axisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic jj-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the CFS instability, while the critical value of T/WT/|W| at the mass-shedding limit is raised even more. For softer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFS instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a high degree of differential rotation the absolute value of the critical T/WT/|W| is below the corresponding value for rigid rotation. We conclude that the parameter space where the CFS instability is able to drive the neutron star unstable is increased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness.Comment: 16 pages, 11 figures; paper accepted for publication in Phys. Rev. D (81.084019

    Cosmic String Power Spectrum, Bispectrum and Trispectrum

    Full text link
    We use analytic calculations of the post-recombination gravitational effects of cosmic strings to estimate the resulting CMB power spectrum, bispectrum and trispectrum. We place a particular emphasis on multipole regimes relevant for forthcoming CMB experiments, notably the Planck satellite. These calculations use a flat sky approximation, generalising previous work by integrating string contributions from last scattering to the present day, finding the dominant contributions to the correlators for multipoles l > 50. We find a well-behaved shape for the string bispectrum (without divergences) which is easily distinguishable from the inflationary bispectra which possess significant acoustic peaks. We estimate that the nonlinearity parameter characterising the bispectrum is approximately f_NL \sim -20 (given present string constraints from the CMB power spectrum. We also apply these unequal time correlator methods to calculate the trispectrum for parrallelogram configurations, again valid over a large range of angular scales relevant for WMAP and Planck, as well as on very small angular scales. We find that, unlike the bispectrum which is suppressed by symmetry considerations, the trispectrum for cosmic strings is large. Our current estimate for the trispectrum parameter is tau_NL \sim 10^5, which may provide one of the strongest constraints on the string model as estimators for the trispectrum are developed

    Improved simulation of non-Gaussian temperature and polarization CMB maps

    Get PDF
    We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l_max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.Comment: 18 pages, 19 figures. Accepted for publication in ApJS. Simulations can be obtained at http://planck.mpa-garching.mpg.de/cmb/fnl-simulation

    Nonaxisymmetric Neutral Modes in Rotating Relativistic Stars

    Get PDF
    We study nonaxisymmetric perturbations of rotating relativistic stars. modeled as perfect-fluid equilibria. Instability to a mode with angular dependence exp(imϕ)\exp(im\phi) sets in when the frequency of the mode vanishes. The locations of these zero-frequency modes along sequences of rotating stars are computed in the framework of general relativity. We consider models of uniformly rotating stars with polytropic equations of state, finding that the relativistic models are unstable to nonaxisymmetric modes at significantly smaller values of rotation than in the Newtonian limit. Most strikingly, the m=2 bar mode can become unstable even for soft polytropes of index N1.3N \leq 1.3, while in Newtonian theory it becomes unstable only for stiff polytropes of index N0.808N \leq 0.808. If rapidly rotating neutron stars are formed by the accretion-induced collapse of white dwarfs, instability associated with these nonaxisymmetric, gravitational-wave driven modes may set an upper limit on neutron-star rotation. Consideration is restricted to perturbations that correspond to polar perturbations of a spherical star. A study of axial perturbations is in progress.Comment: 57 pages, 9 figure

    Effects of Differential Rotation on the Maximum Mass of Neutron Stars

    Get PDF
    The merger of binary neutron stars is likely to lead to differentially rotating remnants. In this paper we numerically construct models of differentially rotating neutron stars in general relativity and determine their maximum allowed mass. We model the stars adopting a polytropic equation of state and tabulate maximum allowed masses as a function of differential rotation and stiffness of the equation of state. We also provide a crude argument that yields a qualitative estimate of the effect of stiffness and differential rotation on the maximum allowed mass.Comment: 6 pages, to appear in Ap

    Kink Solution in a Fluid Model of Traffic Flows

    Full text link
    Traffic jam in a fluid model of traffic flows proposed by Kerner and Konh\"auser (B. S. Kerner and P. Konh\"auser, Phys. Rev. E 52 (1995), 5574.) is analyzed. An analytic scaling solution is presented near the critical point of the hetero-clinic bifurcation. The validity of the solution has been confirmed from the comparison with the simulation of the model.Comment: RevTeX v3.1, 6 pages, and 2 figure
    corecore