128 research outputs found

    The role of ethnicity in the perception of pork barrel politics : Evidence from a survey experiment in Slovakia

    Get PDF
    In divided societies and new democracies, clientelism (in the form of pork barrel) and ethno-politics appear to go hand in hand. It is apparent that politicians are incentivized to compete for support within their own ethnic groups, but does an ethnic link between voters and decision-makers influence how voters perceive and evaluate pork barrel practices? To address this question, we conducted a survey experiment (n=1,200) in ethnically heterogeneous Slovakia. The aim was to examine whether pork barrel politics implemented by a Slovak decision-maker and a Hungarian decision-maker are evaluated differently by Slovaks and Hungarians. The findings suggest that when individuals and decision-makers share the same ethnicity, individuals tend to maintain an equally positive level of trust and willingness to vote for the responsible decision-maker, even when the decision-maker implements a policy decision that does not benefit them. Nonetheless, shared ethnicity does not prevent individuals from being critical of the implemented policy decision itself.Peer reviewe

    Erosion of a granular bed driven by laminar fluid flow

    Full text link
    Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux QQ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height hrh_r which depends on QQ. The Shields threshold criterion assumes that the non-dimensional ratio θ\theta of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for θ>θc\theta >\theta_c. We find that the Shields criterion describes the observed relationship hr∝Q1/2h_r \propto Q^{1/2} when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of θ\theta yields a collapse of the measured Einstein number q∗q^* to a power-law function of θ−θc\theta - \theta_c with exponent 1.75±0.251.75 \pm 0.25. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.Comment: 12 pages, 5 figure

    Heisenberg-Limited Atom Clocks Based on Entangled Qubits

    Get PDF
    We present a quantum-enhanced atomic clock protocol based on groups of sequentially larger Greenberger-Horne-Zeilinger (GHZ) states that achieves the best clock stability allowed by quantum theory up to a logarithmic correction. Importantly the protocol is designed to work under realistic conditions where the drift of the phase of the laser interrogating the atoms is the main source of decoherence. The simultaneous interrogation of the laser phase with a cascade of GHZ states realizes an incoherent version of the phase estimation algorithm that enables Heisenberg-limited operation while extending the coherent interrogation time beyond the laser noise limit. We compare and merge the new protocol with existing state of the art interrogation schemes, and identify the precise conditions under which entanglement provides an advantage for clock stabilization: it allows a significant gain in the stability for short averaging time.Physic

    Serologic Evidence of West Nile Virus Transmission, Jamaica, West Indies

    Get PDF
    In spring 2002, an intensive avian serosurvey was initiated in Jamaica, Puerto Rico, and Mexico. We collected >1,600 specimens from resident and nonresident neotropical migratory birds before their northerly migrations. Plaque reduction neutralization test results indicated specific neutralizing antibodies to West Nile virus in 11 resident species from Jamaica

    Long-distance entanglement distribution using individual atoms in optical cavities

    Get PDF
    Individual atoms in optical cavities can provide an efficient interface between stationary qubits and flying qubits (photons), which is an essential building block for quantum communication. Furthermore, cavity-assisted controlled-not (cnot) gates can be used for swapping entanglement to long distances in a quantum repeater setup. Nonetheless, dissipation introduced by the cavity during the cnot may increase the experimental difficulty in obtaining long-distance entanglement distribution using these systems. We analyze and compare a number of cavity-based repeater schemes combining various entanglement generation schemes and cavity-assisted cnot gates. We find that a scheme, where high-fidelity entanglement is first generated in a two-photon detection scheme and then swapped to long distances using a recently proposed heralded controlled-Z (cz) gate, exhibits superior performance compared to the other schemes. The heralded gate moves the effect of dissipation from the fidelity to the success probability of the gate thereby enabling high-fidelity entanglement swapping. As a result, high-rate entanglement distribution can be achieved over long distances even for low cooperativities of the atom-cavity systems. This high-fidelity repeater is shown to outperform the other cavity-based schemes by up to two orders of magnitude in the rate for realistic parameters and large distances (1000 km).Physic

    Nonlocal observables and lightcone-averaging in relativistic thermodynamics

    Full text link
    The unification of relativity and thermodynamics has been a subject of considerable debate over the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist different, seemingly equally plausible ways of defining heat and work in relativistic systems. These ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature. Traditional 'isochronous' formulations of relativistic thermodynamics are neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields novel, testable predictions and allows for a straightforward-extension of thermodynamics to General Relativity. Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex

    Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments

    Full text link
    A large number of treatments of the meson spectrum have been tried that consider mesons as quark - anti quark bound states. Recently, we used relativistic quantum "constraint" mechanics to introduce a fully covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure functions as a "quantum mechanical transform of Bethe-Salpeter equation". Here, we test its spectral fits against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and the popular semi-relativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and does so with the smallest number of interaction functions without additional cutoff parameters necessary to make other approaches numerically tractable. We discuss the distinguishing features of our model that may account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings that are crucial for its success when solved nonperturbatively for the analogous two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content

    A Tale of Three Equations: Breit, Eddington-Guant, and Two-Body Dirac

    Get PDF
    G.Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit's version of retardation.Comment: 15 pages latex, published in Foundations of Physics, Vol 27, 67 (1997
    • …
    corecore