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We present a detailed theoretical analysis of a weakly driven, multimode optomechanical system, in which two
optical modes are strongly and near-resonantly coupled to a single mechanical mode via a three-wave mixing
interaction. We calculate one- and two-time intensity correlations of the two optical fields and compare them to
analogous correlations in atom-cavity systems. Nonclassical photon correlations arise when the optomechanical
coupling g exceeds the cavity decay rate κ , and we discuss signatures of one- and two-photon resonances as
well as quantum interference. We also find a long-lived correlation that decays slowly with the mechanical
decay rate γ , reflecting the heralded preparation of a single-phonon state after detection of a photon. Our results
provide insight into the quantum regime of multimode optomechanics, with potential applications for quantum
information processing with photons and phonons.
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I. INTRODUCTION

Optomechanical systems (OMSs) involve the interaction
between optical and mechanical modes arising from radiation
pressure force, canonically in an optical cavity with a movable
mirror [1–5]. Recent progress in optomechanical (OM) cooling
techniques has been rapid [6–13], and experiments have
now demonstrated cooling to the mechanical ground state
[14–16], OM-induced transparency [17,18], and coherent
photon-phonon conversion [19–21]. These developments have
attracted significant interest, and motivated proposals for
applications exploiting OM interactions at the quantum level,
ranging from quantum transducers [22–25] and mechanical
storage of light [26–28] to single-photon sources [29] and
OM quantum information processing [30,31]. Significant
advantages of OM platforms for these applications are the
possibility for mass production and on-chip integration using
nanofabrication technologies, wide tuneability, and the versa-
tility of mechanical oscillators to couple to a wide variety of
quantum systems [32].

The force exerted by a single photon on a macroscopic
object is typically weak; consequently, experiments have so far
focused on the regime of strong optical driving, where the OM
interaction is strongly enhanced but effectively linear [33,34].
However, recent progress in the design of nanoscale OMSs
[16,35–37] and OM experiments in cold-atomic systems
[38,39] suggests that the regime of single-photon strong
coupling, where the OM coupling strength g exceeds the
optical cavity decay rate κ , is within reach of the next
generation of OM experiments. In this regime, the inherently
nonlinear OM interaction is significant at the level of single
photons and phonons [29,40–42]. For example, the presence
of a single photon can—via the mechanical mode—strongly
influence or even block the transmission of a second photon,
leading to photon blockade. This single-photon nonlinearity
was recently analyzed for canonical OMSs consisting of a
single optical mode coupled to a mechanical mode [29,43,44].
However, with a single optical mode, the OM coupling is
highly off-resonant, leading to a suppression of effective

photon-photon interactions by the large mechanical frequency
ωm � g [29].

In this paper, we develop a quantum theory of a weakly
driven two-mode OMS [30,45–47] in which two optical modes
are coupled to a mechanical mode. The key advantage of
this approach is that photons in the two optical modes can
be resonantly exchanged by absorbing or emitting a phonon
via three-mode mixing. We extend our earlier results [30],
where we discussed possible applications of resonant optome-
chanics such as single-photon sources and quantum gates by
exploring one-time and two-time photon correlations of both
optical modes. Specifically, we find that the photon-photon
correlation function of the undriven optical mode exhibits
delayed bunching for long delay times, arising from a heralded
single mechanical excitation after detection of a photon in the
undriven mode. Finally, we compare the two-mode OMS to
the canonical atomic cavity QED system with a similar low-
energy level spectrum [48,49]. Despite several similarities,
we find that in stark contrast to the atom-cavity system, the
OMS studied here does not exhibit nonclassical correlations
unless the strict strong-coupling condition g > κ is met. Our
results serve as a guideline for OM experiments nearing
the regime of single-photon nonlinearity, and for potential
quantum information processing applications with photons
and phonons.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the system and details of the model. In
Sec. III, we calculate the equal-time intensity correlation func-
tions of both transmitted and reflected photons, and discuss
signatures of nonclassical photon statistics. In Sec. IV, we
investigate two-time correlation functions of the transmitted
photons, and discuss delayed coincidence correlations that
indicate the heralded preparation of a single-phonon state.
Finally, we provide a brief outlook on the feasibility of strong
OM coupling in Sec. V, and conclude in Sec. VI with a
summary of our results. Appendix B contains details of our
analytic model used to derive several results discussed in the
paper.
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FIG. 1. (Color online) (a) Optomechanical system consisting
of two tunnel-coupled optical cavity modes c1 and c2, and a
mechanical oscillator b coupled to one of the cavity modes by
radiation pressure. The coupled optical modes are diagonalized in
terms of symmetric and antisymmetric modes, cs and ca . (b) Level
diagram showing the relevant zero-, one- and two-photon states
at zero temperature and under the three-mode resonance condition
ωs − ωa = ωm. States are labeled by |nansnb〉 denoting the number
na (ns) of antisymmetric (symmetric) photons and the number of
phonons nb. The optomechanical coupling g splits the degeneracy of
states |nansnb〉 and |na − 1,ns + 1,nb + 1〉.

II. MULTIMODE OPTOMECHANICS

We consider the setup shown schematically in Fig. 1(a),
consisting of two optical cavities separated by a semitranspar-
ent mirror. The cavity modes are coupled by photons tunneling
through the fixed mirror in the middle, and the mode on the
right couples to the motion of a vibrating end mirror through
radiation pressure. The Hamiltonian describing the system is
(h̄ = 1)

H0 = ω0(c†1c1 + c
†
2c2) − J (c†1c2 + c

†
1c2) + ωmb†b

− g(b† + b)c†2c2 + Hdr(t), (1)

where c1,2 are annihilation operators for the two cavity modes,
which we assume to be degenerate with frequency ω0, and J is
the photon tunneling amplitude through the central mirror. The
motion of the end mirror on the right is described by a single
mechanical mode with annihilation operator b and frequency
ωm, and the parametric coupling strength g corresponds to
the shift of the cavity frequency due to a single mechanical
phonon. Finally, Hdr(t) = ∑

i=1,2(�icie
iωLt + H.c.) describes

two coherent driving fields of amplitudes �i and frequency
ωL, which are applied to the left and right cavities.

We are interested in a three-mode resonant interaction in
which the two optical modes exchange a photon by absorbing
or emitting a phonon in the mechanical mode. We begin by

diagonalizing the optical part of H0 in the first line of Eq. (1)
in terms of the symmetric and antisymmetric combinations
of the optical modes, cs = 1√

2
(c1 + c2) and ca = 1√

2
(c1 − c2),

with eigenfrequencies ωa,s = ω0 ± J . In the frame rotating at
the laser frequency ωL, we obtain

H ′ = −�c†aca − (� + 2J )c†s cs + ωmb†b

+ g

2
(c†acs + c†s ca)(b + b†) +

∑
η=s,a

�η(c†η + cη), (2)

where � = ωL − ωa is the laser detuning from the ca

mode, and �s,a = (�1 ± �2)/
√

2. Next, we focus on the
case of three-mode resonance, ωm = 2J , and assume ωm �
g,|�|,�i . The third inequality here corresponds to a weak
optical drive, which is the relevant limit for studying single-
photon nonlinear effects in this work. This allows us to make
a rotating-wave approximation with respect to the remaining
large frequency scale ωm, and in the frame defined by the trans-
formation U = exp[−iωmt(b†b − c

†
s cs)], the Hamiltonian H ′

simplifies to

H = −�(c†aca + c†s cs) + g

2
(c†acsb + b†c†s ca) + �a(c†a + ca).

(3)

This is the starting point for our analysis discussed below.
Note that the assumptions made in deriving Eq. (3) are
fulfilled in most experimental systems of interest [50,51],
and H represents a generic description for resonant two-mode
optomechanics [45,46,52,53].

The nonlinear terms proportional to g in Eq. (3) describe
coherent photon exchange between the two optical modes
mediated by absorption or emission of a phonon. The resulting
low-energy level diagram is shown in Fig. 1(b), where |nansnb〉
represents a state with na and ns photons in the ca and cs modes,
and nb phonons in the mechanical mode. In the absence of a
drive, we diagonalize H in this few-photon subspace, yielding
the eigenstates

|0〉 = |000〉, (4)

|1±〉 = 1√
2

(|100〉 ± |011〉) , (5)

|2±〉 = 1√
6

(|200〉 ±
√

3|111〉 +
√

2|022〉), (6)

|20〉 = 1√
3

(
√

2|200〉 − |022〉). (7)

Note that in the diagonal basis, the weak driving field couples
all states with photon number differing by one. In the following
sections, we use this low-energy Hilbert space to understand
photon correlations in the system.

In addition to the coherent evolution modeled by the Hamil-
tonian H , we describe optical and mechanical dissipation using
a master equation for the system density operator ρ,

ρ̇ = −i[H,ρ] + κD[ca]ρ + κD[cs]ρ

+ γ

2
(Nth + 1)D[b]ρ + γ

2
NthD[b†]ρ, (8)

where H is given by Eq. (3), 2κ and γ are energy decay
rates for the optical and mechanical modes, respectively,
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Nth is the thermal phonon population, and D[ô]ρ = 2ôρô† −
ô†ôρ − ρô†o. Below we study nonlinear effects at the level of
single photons, both numerically and analytically, by solving
Eq. (8) approximately in the limit of weak optical driving,
� ≡ �a � κ .

III. EQUAL-TIME CORRELATIONS

A. Average transmission and reflection

Before focusing on photon-photon correlations, we first
study the average transmission through the cavity, which
is proportional to the mean intracavity photon number. In
Figs. 2(a) and 2(b), we show the intracavity photon number of
the two optical modes,

n̄i = 〈c†i ci〉, (9)

where i = a,s, and angle brackets denote the steady-state
average. At �/g = ± 1

2 , both transmission curves exhibit a
maximum, indicating that the driving field is in resonance
with an eigenmode of the system. The position of these peaks
can be understood from the level diagram shown in Fig. 1(b),
which at finite g shows a splitting of the lowest photonic states
into a doublet, |1±〉 = (|100〉 ± |011〉)/√2.

In addition to the transmission, we plot the mean reflected
photon number in Fig. 2(c). As discussed below, the reflected
photon statistics can also exhibit signatures of nonlinearity. We
calculate properties of the reflected light using the annihilation
operator cR = ca + i �

κ
, obtained from standard input-output

relations for a symmetric two-sided cavity (see Appendix A).
The mean reflected photon number n̄R = 〈c†RcR〉 is plotted in
Fig. 2(c). At �/g = ± 1

2 , the average reflection has a minimum
where the average transmission has a maximum. Note that in
contrast to a single cavity, even on resonance the transmission
probability is less than unity and the reflection probability
remains finite.

B. Intensity correlations

To characterize nonclassical photon statistics in the light
transmitted through the OMS, we study the equal-time photon-
photon correlation functions,

g
(2)
ii (0) = 〈c†i c†i cici〉

〈c†i ci〉2
, (10)

where all operators are evaluated at the same time and
i = a,s,R. A normalized correlation of g

(2)
ii (0) < 1 indicates

photon antibunching, and the limit g
(2)
ii (0) → 0 corresponds to

the complete photon blockade regime in which two photons
never occupy the cavity at the same time. The solid curves in
Fig. 2 show g(2)

aa (0), g(2)
ss (0), and g

(2)
RR(0) as a function of the

laser detuning and in the limit of weak driving, �/κ � 1. The
most pronounced features of these correlation functions occur
at |�|/g = 0, 1√

8
, 1

2 , and
√

6
4 , as marked by dots A, B, C, and D,

respectively. As we explain in detail in the following analysis,
we find that the photon bunching at A and antibunching at B
are the result of destructive quantum interference, while the
features at points C and D arise from one- and two-photon
resonances.
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FIG. 2. (Color online) (a) Normalized average photon number
(green “+”) and photon-photon correlation function (blue “◦”) for
driven mode ca as a function of laser detuning at zero temperature.
Solid lines are calculated from the analytic model [see Eqs. (18)–(23)]
and points show full numerical calculation. The average photon
number is normalized by n0 = (�/κ)2. (b) Same as (a) for the
undriven mode cs , and (c) for the reflected field cR . In all plots,
we took g/κ = 20 and γ /κ = 0.2. Dots mark features seen at values
of detuning (A) �/g = 0, (B) 1√

8
, (C) 1

2 , and (D)
√

6
4 . The small

discrepancy between the analytic and numerical results in (c) is
due to the approximation g/κ � 1 to simplify the expressions in
Eqs. (18)–(23). Bottom panels A–D illustrate the origin of these
features as explained in the text. Suppression (enhancement) of the
steady-state population of a specific level is indicated by a red X
(green circle).

To gain insight into the two-photon correlation func-
tions shown in Fig. 2, we develop an approximate analytic
model for the system by considering only the six levels
shown in Fig. 1(b). Assuming that the system is initially
prepared in |000〉, these are the only levels significantly
populated by weakly driving the ca mode. We make the
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ansatz [48]

|ψ〉 = A000|000〉 + A100|100〉 + A011|011〉
+A200|200〉 + A111|111〉 + A022|022〉, (11)

and describe the dynamics by evolving |ψ〉 under the ac-
tion of the non-Hermitian Hamiltonian, H̃ = H − i[κc

†
aca +

κc
†
s cs + γ

2 b†b]. This approach allows us to evaluate intensities
up to the order of �2 and two-point correlation up to the order
of �4, since the neglected quantum jumps lead to higher-order
corrections. By neglecting the typically small mechanical
decay rate γ � κ , the amplitudes in Eq. (11) then satisfy

Ȧ000 = 0, (12)

Ȧ100 = −i
g

2
A011 − i�A000 − κ̃A100, (13)

Ȧ011 = −i
g

2
A100 − κ̃A011, (14)

Ȧ200 = −i
g√
2
A111 − i

√
2�A100 − 2κ̃A200, (15)

Ȧ111 = −i
g√
2
A200 − igA022 − i�A011 − 2κ̃A111, (16)

Ȧ022 = −igA111 − 2κ̃A022, (17)

where κ̃ = κ − i�. It is straightforward to solve Eqs. (12)–
(17) for the steady-state amplitudes (see Appendix B). To
the lowest order in �/κ , the mean occupation numbers are
n̄a = |Ā100|2, n̄s = |Ā011|2, and n̄R = |Ā100 + i�/κ|2, where
Ā denote steady-state amplitudes. We obtain

n̄a

n0
= κ2[Rκ (0)]1/2

Rκ

(
g

2

) , (18)

n̄s

n0
= g2κ2

4Rκ

(
g

2

) , (19)

n̄R

n0
≈

[
Rκ/2

(
g

2

)]2

[
Rκ

(
g

2

)]2 , (20)

where RK (ω) = [K2 + (� − ω)2][K2 + (� + ω)2] and n0 =
(�/κ)2. From the factors RK (ω) in the denominators (nu-
merators) in these expressions, we obtain the positions of
the resonances (antiresonances) in the average intracavity
photon numbers, in excellent agreement with the numerical
results shown in Fig. 2. Our six-level model also provides the
equal-time correlations (see Appendix B),

g(2)
aa (0) =

Rκ

(
g√
8

)
Rκ

(
g

2

)
Rκ (0)Rκ

(√
6

4 g
) , (21)

g(2)
ss (0) = 2Rκ

(
g

2

)
Rκ

(√
6

4 g
) , (22)

g
(2)
RR(0) ≈

Rκ

(
g

2

)
R16κ3/g2

(
g

2 − 2κ2

g

)
[
Rκ/2

(
g

2

)]2 . (23)

Again, these expressions are in agreement with the features
seen in the numerical results in Fig. 2. The positions of maxima
and minima are seen directly by the arguments of the factors
RK (ω). Note that we assumed g/κ � 1 to obtain the simplified
expressions in Eqs. (21)–(23), but we retained the shift of order

g(κ/g)2 in the argument in Eq. (23) because this shift is larger
than the width of the antiresonance.

We now discuss each feature in Fig. 2 in terms of our
six-level model together with the diagonal basis in Eqs. (4)–(7).
First, at detuning � = 0 (point A in Fig. 2), we see g(2)

aa (0) > 1,
indicating bunching. This is due to destructive interference
that suppresses the population in |100〉 (panel A in Fig. 2),
and can be understood as the system being driven into a dark
state, |d〉 ∝ g|000〉 − �|011〉, similar to electromagnetically
induced transparency (EIT) [17,54]. In the dark state, |011〉
remains populated, allowing transitions to |111〉, which in
turn is strongly coupled to |200〉. The net result is a relative
suppression of the probability to have one photon compared to
two photons in the driven mode, leading to bunching at � = 0.
Second, at detuning � = g/

√
8 (point B), mode ca shows

antibunching due to a suppressed two-photon probability.
Again, this is due to destructive interference, or the presence
of a dark state in which |200〉 remains unpopulated (panel
B). Third, at detuning � = g

2 (point C), all modes show
antibunching. This is due to a one-photon resonant transition
|0〉 → |1+〉 (panel C). Finally, at detuning � =

√
6

4 g (point D),
both ca and cs show bunching due to a two-photon resonant
transition |0〉 → |2+〉 (panel D).

C. Absence of two-photon resonance at � = 0

At first glance, the level diagram in Fig. 1 together with
bunching in Fig. 2(a) suggest a two-photon resonance at
zero detuning � = 0, where the energy of the eigenstate
|20〉 is equal to the energy of two drive photons. However,
as discussed above, the bunching at � = 0 arises entirely
from the suppression of a one-photon population; further,
we find that the expected two-photon resonance is canceled
by interference. This can be seen from a second-order
perturbative calculation of the two-photon Rabi frequency
�

(2)
0,20

for the transition |0〉 → |20〉. The two-photon state |20〉
can be populated by the drive Hdr = �(c†a + ca) from state |0〉
via two intermediate one-photon eigenstates, |1±〉 given by
Eq. (5), with energies ω1± = −� ± g

2 in the rotating frame.
The resulting Rabi frequency is

�
(2)
0,20

=
∑

n=1−,1+

〈20|Hdr|n〉〈n|Hdr|0〉
ωn

, (24)

which vanishes at � = 0 as a consequence of destructive in-
terference between the two amplitudes. The exact cancellation
is lifted by including finite dissipation and the full spectrum;
nonetheless, this simple argument shows that the expected
two-photon resonance at � = 0 is strongly suppressed.

Further evidence of the absence of a two-photon resonance
at � = 0 is the lack of bunching in the undriven mode in
Fig. 2(b). If there were a two-photon resonance, one would
expect that bunching should also occur in the undriven mode,
since the state |20〉 involves both ca and cs modes. This is
indeed the case at detuning � =

√
6

4 g (see point D in Fig. 2),
where both modes show bunching as a result of two-photon
resonance. In contrast, we see no bunching in the undriven
mode at � = 0. This supports our conclusion that the observed
bunching at � = 0 arises from suppression of population
in |100〉 due to interference, as discussed in Sec. III B, and
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FIG. 3. (Color online) Average number (green dashed line) and
intensity correlation (blue solid line) of total photon number in the
coupled OM system. Parameters are the same as in Fig. 2, and dots
mark the same detunings. One- and two-photon resonances are seen
at C and D, but we see no bunching in the total photon number at
� = 0 (point A). This reflects the lack of two-photon resonance due
to destructive interference [see Eq. (24)].

not from two-photon resonance. As discussed above, this
interference does not suppress population in |011〉, so we do
not expect bunching in the cs mode from this effect.

Finally, to confirm our intuitive picture, we plot the in-
tensity correlation function, g

(2)
tot (0) = 〈ntot(ntot − 1)〉/〈ntot〉2,

of the total photon number, ntot = na + ns , in the coupled
OM system in Fig. 3. The probability to find one photon
in the combined cavity is maximal at �/g = ± 1

2 due to
one-photon resonance. Similarly, we observe antibunching
at point C and bunching at point D due to interference and
two-photon resonance, respectively, as discussed in Sec. III B.
However, we find neither bunching nor antibunching at � = 0,
demonstrating the absence of a two-photon resonance despite
the fact that |20〉 lies at twice the drive frequency.

D. Finite temperature

So far in our analysis we have focused on the case where the
mechanical system is prepared in its vibrational ground state,
|0m〉. This condition can be achieved using high-frequency
resonators operated at cryogenic temperatures [14], and in
the limit of weak driving �/κ � 1 such that optical heating
of the mechanical mode can be neglected. The mechanical
ground state could also be prepared using OM cooling [6–16],
using an optical mode that is far detuned from the ones we
consider here for nonlinear interactions [30]. Nonetheless, in
the following, we extend our analytic treatment to the case
of finite temperature, and show that many of the nonclassical
features are robust even in the presence of small but finite
thermal occupation of the mechanical mode.

To generalize our previous results, we now consider a finite
equilibrium occupation number Nth > 0 of the mechanical
mode, but still assume that γ (Nth + 1) � κ,g. Within this
approximation, we proceed as above, and make a similar six-
level ansatz as in Eq. (11) for each phonon number n,

|ψn〉 = A0,0,n|0,0,n〉 + A1,0,n|1,0,n〉
+A0,1,n+1|0,1,n + 1〉 + A2,0,n|2,0,n〉
+A1,1,n+1|1,1,n + 1〉 + A0,2,n+2|0,2,n + 2〉, (25)

where |ψn〉 includes states up to two photons that are connected
by the weak drive and coupling g, starting from the state
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FIG. 4. (Color online) Correlation functions for finite tempera-
ture. (a) Level diagram showing the six states populated by the drive
from level |0,0,n〉 (left), and the associated eigenmodes (right) with
n-dependent splittings. (b) Driven mode correlation function g(2)

aa (0)
for thermal mechanical occupation Nth = 0,1,2. Solid lines show the
analytic calculation with γ → 0, and dots show the full numerical
results for Nth = 2 only. The inset shows the minimal g(2)

aa (0) as a
function of Nth for several coupling strengths. (c) Same as (b) for the
undriven mode correlation function g(2)

ss (0). Parameters are g/κ = 20
and (for numerics) γ /κ = 10−3.

|00n〉. As shown in Fig. 4(a), the coupling between the
states within each six-level subspace depends explicitly on
the phonon number n. Following the same approach as above,
the amplitudes in Eq. (25) evolve according to

Ȧ0,0,n = 0, (26)

Ȧ1,0,n = −i
g

2

√
n + 1A0,1,n+1 − i�A,00,n − κ̃A1,0,n, (27)

Ȧ0,1,n+1 = −i
g

2

√
n + 1A1,0,n − κ̃A0,1,n+1, (28)
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Ȧ2,0,0 = −ig

√
n + 1

2
A1,1,n+1 − i

√
2�A1,0,n − 2κ̃A2,0,n,

(29)

Ȧ1,1,n+1 = −ig

√
n + 1

2
A2,0,n − ig

√
n + 2

2
A0,2,n+2

− i�A0,1,n+1 − 2κ̃A1,1,n+1, (30)

Ȧ0,2,n+2 = −ig

√
n + 2

2
A1,1,n+1 − 2κ̃A0,2,n+2. (31)

We solve for the steady-state amplitudes within each subspace
n and average the result over the initial thermal phonon
distribution, assuming no coupling between subspaces due to
the small phonon relaxation rate. We obtain the average photon
numbers

n̄a =
∑

n

ζn|Ā1,0,n|2, n̄s =
∑

n

ζn|Ā0,1,n+1|2, (32)

where ζn = e−βh̄ωmn(1 − e−βh̄ωm ) and β−1 = kBT . Similarly,
the g

(2)
ii (0) functions are given by

g(2)
aa (0) = 2

∑
n

ζn|Ā2,0,n|2/n̄2
a, (33)

g(2)
ss (0) = 2

∑
n

ζn|Ā0,2,n+2|2/n̄2
s . (34)

We provide the expressions for the steady-state amplitudes
Ā2,0,n and Ā0,2,n+2 in Appendix B.

In Fig. 4, we plot the correlation functions g(2)
aa (0) and g(2)

ss (0)
for different thermal phonon numbers, Nth. Solid lines were
calculated from the above analytic approach with γ → 0,
and we find excellent agreement with the full numerical
results including small but finite γ (dots, shown only for
thermal occupation Nth = 2). We see that the zero-temperature
features such as antibunching survive at finite temperature for
sufficiently strong coupling [30]. In the insets, we plot the
minimum antibunching as a function of thermal occupation
number for several ratios g/κ . Antibunching remains visible
up to a critical thermal phonon number, set by g/κ , beyond
which the contributions from different phonon numbers smear
out the effect and antibunching vanishes. In addition, for
detunings |�| > g/2, a series of new resonances appear in
the correlation functions, and for small but finite occupation
numbers we find new antibunching features that are absent
for Nth = 0. These new features can be understood from the
n-dependent splitting of the one- and two-photon manifolds, as
indicated in Fig. 4(a). For higher temperatures, the individual
resonances start to overlap, and we observe an overall increase
over a broad region of large positive and negative detunings
due to the cumulative effect of different phonon numbers.

IV. DELAYED COINCIDENCE AND SINGLE-PHONON
STATES

In addition to the equal-time correlations discussed above,
quantum signatures can also be manifested in photon in-
tensity correlations with a finite time delay. We now turn
to a discussion of delayed coincidence characterized by

the two-time intensity correlations functions,

g
(2)
ii (τ ) = 〈c†i (0)c†i (τ )ci(τ )ci(0)〉

〈c†i ci〉2
, (35)

for both driven and undriven modes, i = a,s. Expressing this
correlation in terms of a classical light intensity I , g(2)(τ ) =
〈I (τ )I (0)〉/〈I 〉2, and using the Schwarz inequality, we obtain
the inequalities [48,49]

g(2)(τ ) � g(2)(0), (36)

|g(2)(τ ) − 1| � |g(2)(0) − 1|. (37)

Similar to the classical inequality g(2)(0) > 1 at zero delay,
violation of either of these inequalities at finite delay is
a signature of quantum light. We calculate the delayed
coincidence correlation functions for both the driven and
undriven modes.

A. Driven mode

The correlation function g(2)
aa (τ ) is shown in Fig. 5(a) for

two values of the detuning �. The most striking feature is the
apparent vanishing of g(2)

aa (τ ) at several values of τ when the
detuning is � = 0 [curve A in Fig. 5(a)]. These are due to
Rabi oscillations at frequency g/2 following the detection of a
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τ2τ1 gτ
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(τ
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E: Δ/g = 1/

√
2
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−2
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gτ

A
1
0
0
(τ

)/
Ā

1
0
0

(b)

τ2τ1

Δ/g = 0

FIG. 5. (Color online) (a) Finite time delay intensity correlation
function g(2)

aa (τ ) for detunings (A) �/g = 0 and (E) 1√
2

. Detuning
for curve A is the same as marked in Fig. 2, while E shows a new
effect not seen at equal times. Thin dashed line indicates the classical
bound [see Eq. (36)] for curve E. (b) Evolution of amplitude A100

(normalized by its steady-state value) at detuning A, �/g = 0, after
detecting a driven ca photon at τ = 0. Vertical dash-dotted lines mark
delay times (τ1,τ2) where this amplitude vanishes, resulting in the
vanishing of g(2)

aa (τ ) in (a). Parameters are g/κ = 8 and γ /κ = 0.02.
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photon. This vanishing of the finite delay correlation function
is reminiscent of wave-function collapse that occurs in a cavity
containing an atomic ensemble [48], and while its origins are
similar, there are important differences, as we now discuss.

We can understand the finite delay intensity correlations
in terms of the simple six-level model discussed in the
previous section. We extend this model to describe finite delay
correlations by considering the effect of photodetection on the
steady state of the system. Detection of a photon in the driven
mode projects the system onto the conditional state [55],

|ψa〉 = ca|ψ〉
||ca|ψ〉|| , (38)

where |ψ〉 is given by Eq. (11) with steady-state amplitudes
and || · || denotes normalization after the jump. The conditional
state |ψa〉 has an increased amplitude A100 after the jump
[see jump at τ = 0 in Fig. 5(b)]. Following this initial
photodetection, the amplitude A100 subsequently undergoes
Rabi oscillations with frequency g/2, and decays back to its
steady state at rate 2κ . For sufficiently large bunching at zero
delay and strong coupling g > κ , the Rabi oscillations of the
amplitude A100(τ ) can cause it to cross zero several times
before it decays back to the steady state. As the probability
to detect a second photon is dominated by A100, its zeros are
responsible for the zeros in the correlation function g(2)

aa (τ )
zero at these delay times.

The zeros in g(2)(τ ) appear similar to those exhibited in a
cavity strongly coupled to an atomic ensemble [48,49,56] or a
single atom [57]. However, in stark contrast to the atomic case,
the zeros in Fig. 5(a) are the result of Rabi oscillations follow-
ing the initial quantum jump. This is qualitatively different
from the atomic case, where the change in sign of the relevant
amplitude (the analogy of A100) occurs immediately after the
jump itself, and the amplitude is damped back to the steady
state at the atomic decay rate 
, without Rabi oscillation.
As a consequence, the vanishing correlation function in the
atomic case occurs at a delay set by τ0 ∼ γ −1 ln C, requiring
only strong cooperativity C = g2/κγ > 1 to be visible. On
the other hand, the zeros in Fig. 5(a) occur at delay times set
by τ ∼ 1/g, requiring strictly strong coupling g > κ .

Before moving on to correlations of the undriven mode,
we briefly discuss the correlations of the driven mode at
the other value of detuning shown in Fig. 5(a). At detuning
� = g√

2
(curve E), which shows bunching at zero time, g(2)

aa (t)
increases above its initial value at finite delay. This is a
violation of the classical inequality in Eq. (36), and is an
example of “delayed bunching,” or an increased probability to
detect a second photon at a finite delay time. A similar effect
was recently studied in a single-mode OMS [43]. However,
like the Rabi oscillations, the increased correlation function
decays back to its steady-state value of 1 on the time scale
of κ−1.

B. Heralded single-phonon states

We now turn to a discussion of the delayed coincidence
correlations of the undriven mode cs . We note that correlations
of the driven and undriven modes can be measured separately
provided there is sufficient frequency resolution that is smaller
than the mechanical frequency. The correlation function g(2)

ss (τ )
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6
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E

gτ

g
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)
s
s

(τ
)

A: Δ/g = 0
D: Δ/g =

√
6/4

E: Δ/g = 1/
√

2

FIG. 6. (Color online) Finite time delay intensity correlation
function g(2)

ss (τ ) for detunings (A) �/g = 0, (D)
√

6/4, and (E) 1√
2
.

Thin dashed lines indicate the classical bounds [see Eq. (36)]. Labels
A, D, and E correspond to the same detunings marked in Figs. 2
and 5. Parameters are g/κ = 8 and γ /κ = 0.02.

of the undriven mode is shown in Fig. 6 for several values of
detuning. Similar to the driven mode, the correlation function
of the undriven mode exhibits Rabi oscillations that decay
on the short optical time scale 1/κ . For detuning � = 0 and
�/g =

√
6

4 (curves A and D in Fig. 6), the correlation g(2)
ss (τ )

is described by our previous six-level model of Eqs. (12)–(17).
However, at detuning � = g√

2
(curve E), we see that g(2)

ss (τ )
has a long tail that decays on the much longer mechanical time
scale 1/γ . This is due to the heralded preparation of a single
phonon by detection of a photon in the undriven mode, as we
now discuss.

The increase in delayed coincidence can be understood by
extending the above analytic six-level model to account for the
conditional state of the system after detection of a photon in
the undriven mode. To do this, we simply add three additional
states to the six-level ansatz in Eq. (11),

|ψ〉 = · · · + A001|001〉 + A101|101〉 + A012|012〉, (39)

since these are the states populated by detection of a cs photon
from the original six states (see Fig. 7). Using the same
approach as before, we obtain the following equations for

FIG. 7. (Color online) Effect of detection of a cs photon at
detuning E (�/g = 1√

2
). In the steady state (gray region on left),

the drive is far off-resonant. However, after detection of a cs photon,
the system jumps into the conditional subspace (pink region on right).
Due to the presence of an extra phonon in this subspace, the drive is
resonant and the probability to detect a second photon is much higher
than in the steady state. This increased probability persists as long as
the extra phonon, which decays slowly at rate γ .
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the amplitudes:

Ȧ001 ≈ −γ

2
A001, (40)

Ȧ101 = −i
g√
2
A012 − i�A001 − κ̃A101, (41)

Ȧ012 = −i
g√
2
A101 − κ̃A012, (42)

where we used γ � κ and kept the leading term in Eq. (40). We
obtain g(2)

ss (τ ) by solving these equations for initial conditions
determined by the conditional state |ψs〉 after a quantum jump,

|ψs〉 = cs |ψ〉
||cs |ψ〉|| , (43)

which is a superposition of states |001〉,|101〉,|012〉 (see
Appendix B for details), but in the limit of weak driving consist
mainly of |001〉.

Detection of a photon in the undriven mode implies that
the three-wave mixing interaction converted a photon from
the driven mode into the undriven mode by simultaneously
adding a phonon. The relevant three-level subspace after the
jump (see Fig. 7) has a similar structure as in the steady
state, but the presence of an extra phonon modifies the
splitting of the one-photon states |1′

±〉 = (|101〉 ± |012〉)/√2
to g√

2
(instead of g/2 without a phonon). This changes the

one-photon resonance condition for the drive to � = g√
2
.

Therefore, at this value of the detuning, the process of exciting
the system and emitting a single cs photon is off-resonant;
while after the detection of a first cs photon, the system is
prepared in |001〉, bringing it into resonance with the drive.
This enhances the probability for subsequent excitation and
emission of a second cs photon, increasing the correlation
function at finite delay. The maximum delayed coincidence
occurs after a delay of τ ∼ 1/κ , when the photons have reached
the metastable steady state in the conditional subspace with one
extra phonon. Eventually, the delayed coincidence returns to
its true steady-state value of one on the time scale τ ∼ 1/γ ,
which is the mechanical decay time of the state |001〉. The long
tails observed for other values of detuning (curves A and D) are
also due to the presence of an extra phonon, but in these cases
the system remains off-resonant after the initial cs photon and
the effect is less pronounced. Note that the probability to detect
a photon from the driven mode also increases in the conditional
state, so a similar effect is seen in the delayed cross-correlation
function g(2)

as (τ ), where the photon in the undriven mode is
detected first.

V. REACHING STRONG COUPLING

The nonclassical correlations predicted in this paper require
strong optomechanical coupling, g > κ , as well as sideband
resolution, ωm � κ,γ . While the combination of these con-
ditions has not yet been demonstrated, several experimental
efforts are currently directed at reaching this regime. By using
micro- and nanofabricated OMSs such as microtoroids or
photonic crystal beams, high-frequency mechanical systems
with ωm ≈ 50 MHz–5 GHz can be combined with low-
loss optical modes, such that the condition ωm � κ � γ is
satisfied [11,23,35]. At the same time, the mechanical system
can already be prepared close to the quantum ground state

by working at cryogenic temperatures. In microfabricated
OMSs, single-photon couplings of about g/κ ≈ 0.001 have
been demonstrated [20,35,37]. The largest value to date
of g/κ ≈ 0.007 has been reached in photonic crystal-beam
resonators [58], where colocalized optical and vibrational
resonances are highly confined to maximize coupling, while
the surrounding structure is engineered to minimize loss.
Conversely, in cold-atomic experiments, the effective strong
OM coupling regime has been reached [59], while sideband
resolution remains a challenge [60].

There are several existing proposals for how to meet the
challenge of g/κ > 1 in the photonic crystal-beam setup. First,
the single-photon optomechanical coupling can be increased
by making use of nanoslots in the structure [61,62] to further
localize the electric field at the position of the mechanical
mode. This could improve g by a factor of 10 [46]. Second,
numerical studies suggest that κ can be further decreased by
fine tuning the size and position of the slots in the photonic
crystals [63,64]. Finally, new materials are currently being
tested for an overall improvement of the OM properties of
nanofabricated devices [65]. Thus by using these ultrahigh Q

photonic crystals or similar designs, an increase of g/κ by a
factor of ∼100 is realistic. Note that once the strong-coupling
condition has been achieved, the implementation of two- or
multimode OMSs with adjustable tunneling, 2J ∼ ωm, can
be realized via evanescent field coupling, as has already been
demonstrated in the weak-coupling regime [23,35,50].

VI. CONCLUSIONS

We have studied nonclassical intensity correlations in
a driven, near-resonant optomechanical system with one
mechanical and two optical modes. In the regime of strong
coupling g > κ , this system allows for nonlinear quantum
optics through a resonant three-mode interaction in which
the exchange of two photons is mediated by a phonon. We
have identified several different processes that can lead to
nonclassical antibunching and delayed bunching, and we have
derived a simple analytic model that allows us to describe
and interpret photon-photon correlations in this system both at
zero and at finite temperature. Our findings will be important as
experiments approach the regime of strong OM coupling, and
for potential applications of OMSs for quantum information
processing. In particular, the long-lived correlation found
for the undriven mode raises the intriguing possibility to
exploit such a setup as a quantum memory. The generation
of heralded single phonons on detection of a photon from
the undriven mode may have implications for building OM
quantum repeaters and quantum communication devices.

ACKNOWLEDGMENTS

We are grateful to Pierre Meystre, Norman Yao, and
Nathalie de Leon for enlightening discussions. This work was
supported by NSF, CUA, DARPA, NSERC, Harvard Purcell
Fellowship, the Packard Foundation, the EU network AQUTE,
and the Austrian Science Fund (FWF) through SFB FOQUS
and the START Grant No. Y 591-N16.

013839-8



SINGLE-PHOTON NONLINEARITIES IN TWO-MODE . . . PHYSICAL REVIEW A 87, 013839 (2013)

APPENDIX A: DERIVATION OF REFLECTED
MODE OPERATOR

We obtain the reflected mode operator cR using input-output
relations for a two-sided cavity. By assuming that the two end
mirrors have the same transmittivity (∝κ), we can write the
input-output relation for cavity mode ca on the driven mirror
as

ca,out = √
κca − ca,in, (A1)

where ca,in = −i �√
κ

is the incoming field operator on the
mirror and ca,out is the output field operator. For direct
comparison with ca , we divide by

√
κ and define the reflection

mode operator as cR ≡ ca,out/
√

κ = ca + i �
κ

.

APPENDIX B: ANALYTIC MODEL

In this Appendix, we provide the analytic solutions used
to calculate one- and two-time correlation functions in the
steady state. First, one-time correlations are calculated from
the steady-state solutions of Eqs. (12)–(17). We set the time
derivatives to zero and solve the equations iteratively, order by
order, in the weak drive. This procedure yields

Ā000 ≈ 1, (B1)

Ā100 = −iα
1

1 + 4x2
, (B2)

Ā011 = −α
2x

1 + 4x2
, (B3)

Ā200 = − α2

√
2

1 + 2x2

(1 + 4x2)(1 + 6x2)
, (B4)

Ā111 = iα2 2x

(1 + 4x2)(1 + 6x2)
, (B5)

Ā022 = α2 4x2

(1 + 4x2)(1 + 6x2)
, (B6)

where α = �/κ̃ (|α|2 � 1), x = g/(4κ̃), and κ̃ = κ − i�.
Using these amplitudes, we can express all equal-time av-
erages. The mean photon numbers are

n̄a = |Ā100|2, (B7)

n̄s = |Ā011|2, (B8)

n̄R =
∣∣∣∣Ā100 + i

�

κ

∣∣∣∣
2

, (B9)

and the photon-photon correlation functions are

g(2)
aa (0) = 2|Ā200|2

|Ā100|4 , (B10)

g(2)
ss (0) = 2|Ā022|2

|Ā011|4 , (B11)

g
(2)
RR(0) =

∣∣−(
�
κ

)2 + 2i �
κ
Ā100 + √

2Ā200

∣∣2

∣∣i �
κ

+ Ā100

∣∣4 . (B12)

To leading order in κ/g, these yield Eqs. (18)–(23).
At finite temperature, we calculate steady-state amplitudes

within each phonon subspace n similarly in the ansatz of
Eq. (25). Using the notation Rκ (ω) introduced in Sec. III B, the
steady-state amplitudes within the subspace with n phonons
in the optical ground state are

|Ā10n|2 = �2√Rκ (0)

Rκ

(
g

2

√
n + 1

) , (B13)

|Ā01n+1|2 = �2g2(n + 1)

4Rκ

(
g

2

√
n + 1

) , (B14)

|Ā20n|2 = �4Rκ (g/
√

8)

Rκ (g
√

(2n + 1)/8)Rκ

(
g

2

√
n + 1

) , (B15)

|Ā02n+2|2 = �4g4(n + 1)(n + 2)

32Rκ (g
√

(2n + 1)/8)Rκ

(
g

2

√
n + 1

) . (B16)

Two-time correlation functions are calculated similarly,
using the conditional state after a jump [see Eqs. (38)
and (43)] as the initial condition. For example, the unnor-
malized state after detection of a photon in the ca mode
is ca|ψ〉 = Ā100|000〉 + √

2Ā200|100〉 + Ā111|011〉. We solve
Eqs. (12)–(14) for the amplitudes with this state as the initial
condition. The finite delay correlation of the driven mode is

g(2)
aa (τ ) = |A100(τ )|2

|Ā100|4 , (B17)

in good agreement with the numerics. The correlation of
the undriven mode g(2)

ss (τ ) is calculated similarly. The un-
normalized state after detection in the cs mode is cs |ψ〉 =
Ā011|001〉 + Ā111|101〉 + √

2Ā022|012〉. Using this as the
initial condition, we solve Eqs. (40)–(42) for the ampli-
tudes in the conditional state. In the limit of γ � κ , we
obtain

g(2)
ss (τ ) = |A012(τ )|2

|Ā011|4 . (B18)
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