31 research outputs found

    The caribbean coastal marine productivity program (CARICOMP)

    Get PDF
    CARICOMP is a regional scientific program to study land-sea interaction processes in the Caribbean coastal zone. It has been collecting data since 1992, when a Data Management Centre was established at the University of the West Indies in Jamaica. Initially it focuses on documenting the structure and productivity of major coastal communities (mangrove forests, seagrass meadows and coral reefs) at relatively undisturbed sites in diverse physical settings. Second, by regular recording of physical and biological parameters, it monitors for change, seeking to distinguish natural from anthropogenic disturbance. Third, it constitutes a regional network of observers, able to collaborate on studies of region-wide events. Examples are presented of the diverse data sets collected by the Program.Fil: Alcolado, Pedro M.. Instituto de Oceanología; CubaFil: Alleng, Gerard. No especifíca;Fil: Bonair, Kurt. No especifíca;Fil: Bone, David. Universidad Simón Bolívar; VenezuelaFil: Buchan, Kenneth. No especifíca;Fil: Bush, Phillippe G.. Protection and Conservation Unit; Islas CaimánFil: De Meyer, Kalli. No especifíca;Fil: Garcia, Jorge R.. Universidad de Puerto Rico; Puerto RicoFil: Garzón Ferreira, Jaime. Instituto de Investigaciones Marinas y Costeras; ColombiaFil: Gayle, Peter M. H.. Discovery Bay Marine Laboratory; JamaicaFil: Gerace, Donald T.. Bahamian Field Station; BahamasFil: Geraldes, Francisco X.. Universidad Autonoma de Santo Domingo.; República DominicanaFil: Dahlgren, Eric Jordán. Universidad Nacional Autónoma de México; MéxicoFil: Kjferve, Björn. University of South Carolina; Estados UnidosFil: Klein, Eduardo. Universidad Simón Bolívar; VenezuelaFil: Koltes, Karen. Smithsonian Institution; Estados UnidosFil: Laydoo, Richard S.. No especifíca;Fil: Linton, Dulcie M.. University of the West Indies ; JamaicaFil: Ogden, John C.. Florida Institute of Oceanography; Estados UnidosFil: Oxenford, Hazel A.. McGill University; BarbadosFil: Parker, Christoph. McGill University; BarbadosFil: Penchaszadeh, Pablo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Pors, Leon P. P. J.. Universidad Simón Bolívar; VenezuelaFil: Ramírez Ramírez, Javier. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; MéxicoFil: Ruiz Rentería, Francisco. Universidad Nacional Autónoma de México; MéxicoFil: Ryan, Joseph D.. Centro de Investigación y Documentación de la Costa Atlántica; NicaraguaFil: Smith, Struan R.. Bermuda Biological Station for Research; BermudasFil: Tschirky, John. Latin American and Caribbean Division; Estados UnidosFil: Varela, Ramon. Estación de Investigaciones Marinas de Margarita; VenezuelaFil: Walker, Susan. No especifíca;Fil: Weil, Ernesto. Universidad de Puerto Rico; Puerto RicoFil: Wiebe, William J.. University of Georgia; Estados UnidosFil: Woodley, Jeremy D.. University of the West Indies; JamaicaFil: Zieman, Joseph C.. University of Virginia; Estados Unido

    Caribbean-Wide, Long-Term Study of Seagrass Beds Reveals Local Variations, Shifts in Community Structure and Occasional Collapse

    Get PDF
    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m−2) and annual foliar productivity of the dominant seagrass T. testudinum (2000 g dry m−2) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: A comparison of pigs with different postweaning growth rates

    Get PDF
    Although most pigs recover rapidly from stresses associated with the transition of weaning, a portion of the population lags behind their contemporaries in growth performance. The underlying biological and molecular mechanisms involved in postweaning differences in growth performance are poorly understood. The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs was reared in commercial conditions and weighed at birth, weaning, and 3 wk postweaning. Transition ADG (tADG) was calculated as the ADG for the 3-wk period postweaning. Nine pigs from both the lowest 10th percentile (low tADG) and the 60th to 70th percentile (high tADG) were harvested at 3 wk postweaning. Differential expression analysis was conducted in longissimus dorsi muscle (LM) and subcutaneous adipose tissue using RNA-Seq methodology. In LM, 768 transcripts were differentially expressed (DE), 327 with higher expression in low tADG and 441 with higher expression in high tADG pigs (q 1.3). The list of DE genes with higher expression in low tADG LM was enriched in genes with functions related to protein catabolism (enrichment score > 1.3). Analysis of known gene-gene interactions identified possible regulators of these differences in gene expression in LM of high and low tADG pigs; these include forkhead box O1 (FOXO1), growth hormone (GH1), and the glucocorticoid receptor (NR3C1). Differences in gene expression between poor transitioning pigs and their contemporaries indicate a shift to decreased protein synthesis, increased protein degradation, and reduced glucose metabolism in the LM of low tADG pigs.This article is from Journal of Animal Science 93 (2015): 2134–2143, doi:10.2527/jas.2014-8593. Posted with permission.</p

    Total (above- and below-ground) biomass of the principal components of the community per sampling station grouped per site.

    No full text
    <p>Other grass: species of seagrass other than <i>Thalassia testudinum</i>, mostly <i>Syringodium filiforme</i>. Somatic (decalcified) above-ground weight of the calcareous algae is considered. The boxes and bars represent inter-annual variation, and stations with only one sampling event are excluded. The digits above the bars in the bottom graph indicate N (the number of sampling years). M median of fleshy algae at site 5-station 13. See legend of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0090600#pone-0090600-g002" target="_blank">Fig. 2</a> for further explanation.</p
    corecore