87 research outputs found

    Sound modes in hot nuclear matter

    Get PDF
    The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a non-monotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer wave length region.Comment: 15 pages, 4 figures, submitted to Phys. Rev.

    Cavitation and bubble collapse in hot asymmetric nuclear matter

    Full text link
    The dynamics of embryonic bubbles in overheated, viscous and non-Markovian nuclear matter is studied. It is shown that the memory and the Fermi surface distortions significantly affect the hinderance of bubble collapse and determine a characteristic oscillations of the bubble radius. These oscillations occur due to the additional elastic force induced by the memory integral.Comment: Revtex file (10 pages) and 3 figure

    Non-Markovian large amplitude motion and nuclear fission

    Full text link
    The general problem of dissipation in macroscopic large-amplitude collective motion and its relation to energy diffusion of intrinsic degrees of freedom of a nucleus is studied. By applying the cranking approach to the nuclear many body system, a set of coupled dynamical equations for the collective classical variables and the quantum mechanical occupancies of the intrinsic nuclear states is derived. Different dynamical regimes of the intrinsic nuclear motion and its consequences on time properties of collective dissipation are discussed. The approach is applied to the descant of the nucleus from the fission barrier.Comment: 9 pages and 3 figure

    Chaotic scattering on surfaces and collisional damping of collective modes

    Get PDF
    The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is compared with the contribution from interparticle collisions. A unified response function is presented which includes surface damping as well as collisional damping. The surface damping enters the response via the Lyapunov exponent and the collisional damping via the relaxation time. The former is calculated for different shape deformations of quadrupole and octupole type. The surface as well as the collisional contribution each reproduce almost the experimental value, therefore we propose a proper weighting between both contributions related to their relative occurrence due to collision frequencies between particles and of particles with the surface. We find that for low and high temperatures the collisional contribution dominates whereas the surface damping is dominant around the temperatures 3/2π\sqrt{3}/2\pi of the centroid energy.Comment: PRC su

    A dependence of the enhancement factor in energy-weighted sums for isovector giant resonances

    Full text link
    We consider the energy weighted sums (EWS) for isovector giant dipole resonances (IVGDR) in finite nuclei within Landau kinetic theory. The dependence of both IVGDR energy, EIVGDRE_{IVGDR}, and the EWS enhancement factor, κ(A)\kappa (A), on the mass number AA occurs because of the boundary condition on the moving nuclear surface. The values of EIVGDRA1/3E_{IVGDR}A^{1/3} and κ(A)\kappa (A) increase with AA. The obtained value of the enhancement factor is about 10% for light nuclei and reaches approximately 20% for heavy nuclei. A fit of the enhancement factor to the proper experimental data provides a value for the isovector Landau amplitude of F11.1F'_1\simeq 1.1.Comment: 14 pages, 3 figures, revised version, published in Phys. Rev. C79, 024321 (2009

    Memory effects on descent from nuclear fission barrier

    Get PDF
    Non-Markovian transport equations for nuclear large amplitude motion are derived from the collisional kinetic equation. The memory effects are caused by the Fermi surface distortions and depend on the relaxation time. It is shown that the nuclear collective motion and the nuclear fission are influenced strongly by the memory effects at the relaxation time τ51023s\tau \geq 5\cdot 10^{-23}{\rm s}. In particular, the descent of the nucleus from the fission barrier is accompanied by characteristic shape oscillations. The eigenfrequency and the damping of the shape oscillations depend on the contribution of the memory integral in the equations of motion. The shape oscillations disappear at the short relaxation time regime at τ0\tau \to 0, which corresponds to the usual Markovian motion in the presence of friction forces. We show that the elastic forces produced by the memory integral lead to a significant delay for the descent of the nucleus from the barrier. Numerical calculations for the nucleus 236^{236}U shows that due to the memory effect the saddle-to-scission time grows by a factor of about 3 with respect to the corresponding saddle-to-scission time obtained in liquid drop model calculations with friction forces.Comment: 22 pages, 8 figures, submitted to Phys. Rev.

    Collisional Damping of Nuclear Collective Vibrations in a Non-Markovian Transport Approach

    Get PDF
    A detailed derivation of the collisional widths of collective vibrations is presented in both quantal and semi-classical frameworks by considering the linearized limits of the extended TDHF and the BUU model with a non-Markovian binary collision term. Damping widths of giant dipole and giant quadrupole excitations are calculated by employing an effective Skyrme force, and the results are compared with GDR measurements in Lead and Tin nuclei at finite temperature.Comment: 23 pages, 6 Figure

    Caloric curves and critical behavior in nuclei

    Get PDF
    Data from a number of different experimental measurements have been used to construct caloric curves for five different regions of nuclear mass. These curves are qualitatively similar and exhibit plateaus at the higher excitation energies. The limiting temperatures represented by the plateaus decrease with increasing nuclear mass and are in very good agreement with results of recent calculations employing either a chiral symmetry model or the Gogny interaction. This agreement strongly favors a soft equation of state. Evidence is presented that critical excitation energies and critical temperatures for nuclei can be determined over a large mass range when the mass variations inherent in many caloric curve measurements are taken into account.Comment: In response to referees comments we have improved the discussion of the figures and added a new figure showing the relationship between the effective level density and the excitation energy. The discussion has been reordered and comments are made on recent data which support the hypothesis of a mass dependence of caloric curve

    Signatures of Selection in Fusion Transcripts Resulting From Chromosomal Translocations in Human Cancer

    Get PDF
    BACKGROUND: The recurrence and non-random distribution of translocation breakpoints in human tumors are usually attributed to local sequence features present in the vicinity of the breakpoints. However, it has also been suggested that functional constraints might contribute to delimit the position of translocation breakpoints within the genes involved, but a quantitative analysis of such contribution has been lacking. METHODOLOGY: We have analyzed two well-known signatures of functional selection, such as reading-frame compatibility and non-random combinations of protein domains, on an extensive dataset of fusion proteins resulting from chromosomal translocations in cancer. CONCLUSIONS: Our data provide strong experimental support for the concept that the position of translocation breakpoints in the genome of cancer cells is determined, to a large extent, by the need to combine certain protein domains and to keep an intact reading frame in fusion transcripts. Additionally, the information that we have assembled affords a global view of the oncogenic mechanisms and domain architectures that are used by fusion proteins. This can be used to assess the functional impact of novel chromosomal translocations and to predict the position of breakpoints in the genes involved

    Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair

    Get PDF
    Characterizing the functional overlap and mutagenic potential of different pathways of chromosomal double-strand break (DSB) repair is important to understand how mutations arise during cancer development and treatment. To this end, we have compared the role of individual factors in three different pathways of mammalian DSB repair: alternative-nonhomologous end joining (alt-NHEJ), single-strand annealing (SSA), and homology directed repair (HDR/GC). Considering early steps of repair, we found that the DSB end-processing factors KU and CtIP affect all three pathways similarly, in that repair is suppressed by KU and promoted by CtIP. In contrast, both KU and CtIP appear dispensable for the absolute level of total-NHEJ between two tandem I-SceI–induced DSBs. During later steps of repair, we find that while the annealing and processing factors RAD52 and ERCC1 are important to promote SSA, both HDR/GC and alt-NHEJ are significantly less dependent upon these factors. As well, while disruption of RAD51 causes a decrease in HDR/GC and an increase in SSA, inhibition of this factor did not affect alt-NHEJ. These results suggest that the regulation of DSB end-processing via KU/CtIP is a common step during alt-NHEJ, SSA, and HDR/GC. However, at later steps of repair, alt-NHEJ is a mechanistically distinct pathway of DSB repair, and thus may play a unique role in mutagenesis during cancer development and therapy
    corecore