479 research outputs found

    CASTNet: Community-Attentive Spatio-Temporal Networks for Opioid Overdose Forecasting

    Full text link
    Opioid overdose is a growing public health crisis in the United States. This crisis, recognized as "opioid epidemic," has widespread societal consequences including the degradation of health, and the increase in crime rates and family problems. To improve the overdose surveillance and to identify the areas in need of prevention effort, in this work, we focus on forecasting opioid overdose using real-time crime dynamics. Previous work identified various types of links between opioid use and criminal activities, such as financial motives and common causes. Motivated by these observations, we propose a novel spatio-temporal predictive model for opioid overdose forecasting by leveraging the spatio-temporal patterns of crime incidents. Our proposed model incorporates multi-head attentional networks to learn different representation subspaces of features. Such deep learning architecture, called "community-attentive" networks, allows the prediction of a given location to be optimized by a mixture of groups (i.e., communities) of regions. In addition, our proposed model allows for interpreting what features, from what communities, have more contributions to predicting local incidents as well as how these communities are captured through forecasting. Our results on two real-world overdose datasets indicate that our model achieves superior forecasting performance and provides meaningful interpretations in terms of spatio-temporal relationships between the dynamics of crime and that of opioid overdose.Comment: Accepted as conference paper at ECML-PKDD 201

    Room-Temperature Inter-Dot Coherent Dynamics in Multilayer Quantum Dot Materials

    Get PDF
    The full blossoming of quantum technologies requires the availability of easy-to-prepare materials where quantum coherences can be effectively initiated, controlled, and exploited, preferably at ambient conditions. Solid-state multilayers of colloidally grown quantum dots (QDs) are highly promising for this task because of the possibility of assembling networks of electronically coupled QDs through the modulation of sizes, inter-dot linkers, and distances. To usefully probe coherence in these materials, the dynamical characterization of their collective quantum mechanically coupled states is needed. Here, we explore by two-dimensional electronic spectroscopy the coherent dynamics of solid-state multilayers of electronically coupled colloidally grown CdSe QDs and complement it by detailed computations. The time evolution of a coherent superposition of states delocalized over more than one QD was captured at ambient conditions. We thus provide important evidence for inter-dot coherences in such solid-state materials, opening up new avenues for the effective application of these materials in quantum technologies

    R3D-BLAST: a search tool for similar RNA 3D substructures

    Get PDF
    R3D-BLAST is a BLAST-like search tool that allows the user to quickly and accurately search against the PDB for RNA structures sharing similar substructures with a specified query RNA structure. The basic idea behind R3D-BLAST is that all the RNA 3D structures deposited in the PDB are first encoded as 1D structural sequences using a structural alphabet of 23 distinct nucleotide conformations, and BLAST is then applied to these 1D structural sequences to search for those RNA substructures whose 1D structural sequences are similar to that of the query RNA substructure. R3D-BLAST takes as input an RNA 3D structure in the PDB format and outputs all substructures of the hits similar to that of the query with a graphical display to show their structural superposition. In addition, each RNA substructure hit found by R3D-BLAST has an associated E-value to measure its statistical significance. R3D-BLAST is now available online at http://genome.cs.nthu.edu.tw/R3D-BLAST/ for public access

    Nuclear medicine procedures and the evaluation of male sexual organs: a short review

    Get PDF
    Sexuality consists of three aspects that are interrelated and inseparable, biological, physiological and social. The biological aspect considers the individual's capability to give and to receive pleasure. In consequence, it covers the functionality of the sexual organs and the physiology of human sexual response cycle. Diagnostic imaging modalities, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been used to evaluate clinical disorders of the male reproductive system. PET and SPECT procedures basically involve the administration of a radiopharmaceutical that has a higher uptake in a specific tumor or tissue. The aim of this brief review is to present some radiopharmaceuticals that have been used in the clinical evaluation of the male sexual organs (testes, prostate, seminal vesicles, penis) related with male sexuality. This information could be useful in better understanding the male sexual response cycle, as well as the sexual disorders, when considering the male sexual organs and the pelvic floor. Moreover, the findings obtained with PET and SPECT imaging could help to evaluate the efficacy of clinical results of therapeutic procedures. In conclusion, the knowledge from these images could aid in better understanding the physiology of the different organs related with sexuality. Furthermore, they could be important tools to evaluate the physiological integrity of the involved organs, to improve clinical strategies and to accompany the patients under treatment

    "Actual" does not imply "feasible"

    Get PDF
    The familiar complaint that some ambitious proposal is infeasible naturally invites the following response: Once upon a time, the abolition of slavery and the enfranchisement of women seemed infeasible, yet these things were actually achieved. Presumably, then, many of those things that seem infeasible in our own time may well be achieved too and, thus, turn out to have been perfectly feasible after all. The Appeal to History, as we call it, is a bad argument. It is not true that if some desirable state of affairs was actually achieved, then it was feasible that it was achieved. “Actual” does not imply “feasible,” as we put it. Here is our objection. “Feasible” implies “not counterfactually fluky.” But “actual” does not imply “not counterfactually fluky.” So, “actual” does not imply “feasible.” While something like the Flukiness Objection is sometimes hinted at in the context of the related literature on abilities, it has not been developed in any detail, and both premises are inadequately motivated. We offer a novel articulation of the Flukiness Objection that is both more precise and better motivated. Our conclusions have important implications, not only for the admissible use of history in normative argument, but also by potentially circumscribing the normative claims that are applicable to us

    Agenesia e lipoma de corpo caloso: relato de caso

    Get PDF
    The agenesis and lipoma of the corpus callosum is a very rare association. We report the case of a 18-years old woman with rare epileptic seizures since the age of 6 years, normal neurological examination, as well as normal electroencephalogram. The brain computed tomography scanning and the magnetic resonance showed the lipoma and the agenesis of the corpus callosum.A agenesia e lipoma do corpo caloso é uma associação muito rara. Relatamos o caso de uma paciente de 18 anos com raras crises epilépticas desde os 6 anos de idade, exame neurológico normal, assim como eletrencefalograma normal. A tomografia computadorizada de crânio e a ressonância magnética mostraram o lipoma e a agenesia de corpo caloso.Escola Paulista de MedicinaUNIFESP, EPMSciEL

    A Mathematical Framework for Protein Structure Comparison

    Get PDF
    Comparison of protein structures is important for revealing the evolutionary relationship among proteins, predicting protein functions and predicting protein structures. Many methods have been developed in the past to align two or multiple protein structures. Despite the importance of this problem, rigorous mathematical or statistical frameworks have seldom been pursued for general protein structure comparison. One notable issue in this field is that with many different distances used to measure the similarity between protein structures, none of them are proper distances when protein structures of different sequences are compared. Statistical approaches based on those non-proper distances or similarity scores as random variables are thus not mathematically rigorous. In this work, we develop a mathematical framework for protein structure comparison by treating protein structures as three-dimensional curves. Using an elastic Riemannian metric on spaces of curves, geodesic distance, a proper distance on spaces of curves, can be computed for any two protein structures. In this framework, protein structures can be treated as random variables on the shape manifold, and means and covariance can be computed for populations of protein structures. Furthermore, these moments can be used to build Gaussian-type probability distributions of protein structures for use in hypothesis testing. The covariance of a population of protein structures can reveal the population-specific variations and be helpful in improving structure classification. With curves representing protein structures, the matching is performed using elastic shape analysis of curves, which can effectively model conformational changes and insertions/deletions. We show that our method performs comparably with commonly used methods in protein structure classification on a large manually annotated data set

    Long-Term Follow-Up After Gene Therapy for Canavan Disease

    Get PDF
    Canavan disease is a hereditary leukodystrophy caused by mutations in the aspartoacylase gene (ASPA), leading to loss of enzyme activity and increased concentrations of the substrate N-acetylaspartate (NAA) in the brain. Accumulation of NAA results in spongiform degeneration of white matter and severe impairment of psychomotor development. The goal of this prospective cohort study was to assess long-term safety and preliminary efficacy measures after gene therapy with an adeno-associated viral vector carrying the ASPA gene (AAV2-ASPA). Using noninvasive magnetic resonance imaging and standardized clinical rating scales, we observed Canavan disease in 28 patients, with a subset of 13 patients being treated with AAV2-ASPA. Each patient received 9 × 1011 vector genomes via intraparenchymal delivery at six brain infusion sites. Safety data collected over a minimum 5-year follow-up period showed a lack of long-term adverse events related to the AAV2 vector. Posttreatment effects were analyzed using a generalized linear mixed model, which showed changes in predefined surrogate markers of disease progression and clinical assessment subscores. AAV2-ASPA gene therapy resulted in a decrease in elevated NAA in the brain and slowed progression of brain atrophy, with some improvement in seizure frequency and with stabilization of overall clinical status

    Pervasive Adaptive Protein Evolution Apparent in Diversity Patterns around Amino Acid Substitutions in Drosophila simulans

    Get PDF
    In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence—in particular, conclusions about the rate and strength of beneficial substitutions—remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot), and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3%) that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis of adaptation
    corecore