8 research outputs found
Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics
Neutron capture cross sections of unstable isotopes are important for
neutron-induced nucleosynthesis as well as for technological applications. A
combination of a radioactive beam facility, an ion storage ring and a high flux
reactor would allow a direct measurement of neutron induced reactions over a
wide energy range on isotopes with half lives down to minutes. The idea is to
measure neutron-induced reactions on radioactive ions in inverse kinematics.
This means, the radioactive ions will pass through a neutron target. In order
to efficiently use the rare nuclides as well as to enhance the luminosity, the
exotic nuclides can be stored in an ion storage ring. The neutron target can be
the core of a research reactor, where one of the central fuel elements is
replaced by the evacuated beam pipe of the storage ring. Using particle
detectors and Schottky spectroscopy, most of the important neutron-induced
reactions, such as (n,), (n,p), (n,), (n,2n), or (n,f), could
be investigated.Comment: 5 pages, 7 figures, Invited Talk given at the Fifteenth International
Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15),
Dresden, Germany, 201
Nucleosynthesis simulations for the production of the p-nuclei 92Mo and 94Mo in a Supernova type II model
We present a nucleosynthesis sensitivity study for the Îł-process in a Supernova type II model within the NuGrid research platform. The simulations aimed at identifying the relevant local production and destruction rates for the p-nuclei of molybdenum and at determining the sensitivity of the final abundances to these rates. We show that local destruction rates strongly determine the abundance of 92 Mo and 94 Mo, and quantify the impact
Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics
Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ), (n,p), (n,α), (n,2n), or (n,f), could be investigated
Nuclear astrophysics with radioactive ions at FAIR
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process β-decay chains. These nuclei are attributed to the p and rp process.
For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections.
The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes