636 research outputs found

    A method to create disordered vortex arrays in atomic Bose-Einstein condensates

    Full text link
    We suggest a method to create turbulence in a trapped atomic Bose-Einstein condensate (BEC). By replacing in the upper half part of our box the wave function, Psi, with its complex conjugate, Psi^{*}, new negative vortices are introduced into the system. The simulations are performed by solving the two-dimensional Gross-Pitaevskii equation (2D GPE). We study the successive dynamics of the wave function by monitoring the evolution of density and phase profile.Comment: 17 pages, 12 figures. Accepted by the Canadian Journal of Physic

    The Universal Scaling Exponents of Anisotropy in Turbulence and their Measurement

    Full text link
    The scaling properties of correlation functions of non-scalar fields (constructed from velocity derivatives) in isotropic hydrodynamic turbulence are characterized by a set of universal exponents. It is explained that these exponents also characterize the rate of decay of the effects of anisotropic forcing in developed turbulence. This set has never been measured in either numerical or laboratory experiments. These exponents are important for the general theory of turbulence, but also for modeling anisotropic flows. We propose in this letter how to measure these exponents using existing data bases of direct numerical simulations and by designing new laboratory experiments.Comment: 10 pages, latex, no figures, online (html) version available at http://lvov.weizmann.ac.il/EXP/EXP.htm

    Geometrical complexity of data approximators

    Full text link
    There are many methods developed to approximate a cloud of vectors embedded in high-dimensional space by simpler objects: starting from principal points and linear manifolds to self-organizing maps, neural gas, elastic maps, various types of principal curves and principal trees, and so on. For each type of approximators the measure of the approximator complexity was developed too. These measures are necessary to find the balance between accuracy and complexity and to define the optimal approximations of a given type. We propose a measure of complexity (geometrical complexity) which is applicable to approximators of several types and which allows comparing data approximations of different types.Comment: 10 pages, 3 figures, minor correction and extensio

    Turbulent luminance in impassioned van Gogh paintings

    Get PDF
    We show that the patterns of luminance in some impassioned van Gogh paintings display the mathematical structure of fluid turbulence. Specifically, we show that the probability distribution function (PDF) of luminance fluctuations of points (pixels) separated by a distance R compares notably well with the PDF of the velocity differences in a turbulent flow, as predicted by the statistical theory of A.N. Kolmogorov. We observe that turbulent paintings of van Gogh belong to his last period, during which episodes of prolonged psychotic agitation of this artist were frequent. Our approach suggests new tools that open the possibility of quantitative objective research for art representation

    Dynamical equations for high-order structure functions, and a comparison of a mean field theory with experiments in three-dimensional turbulence

    Full text link
    Two recent publications [V. Yakhot, Phys. Rev. E {\bf 63}, 026307, (2001) and R.J. Hill, J. Fluid Mech. {\bf 434}, 379, (2001)] derive, through two different approaches that have the Navier-Stokes equations as the common starting point, a set of steady-state dynamic equations for structure functions of arbitrary order in hydrodynamic turbulence. These equations are not closed. Yakhot proposed a "mean field theory" to close the equations for locally isotropic turbulence, and obtained scaling exponents of structure functions and an expression for the tails of the probability density function of transverse velocity increments. At high Reynolds numbers, we present some relevant experimental data on pressure and dissipation terms that are needed to provide closure, as well as on aspects predicted by the theory. Comparison between the theory and the data shows varying levels of agreement, and reveals gaps inherent to the implementation of the theory.Comment: 16 pages, 23 figure

    Energy cascades and flux locality in physical scales of the 3D Navier-Stokes equations

    Full text link
    Rigorous estimates for the total - (kinetic) energy plus pressure - flux in R^3 are obtained from the three dimensional Navier-Stokes equations. The bounds are used to establish a condition - involving Taylor length scale and the size of the domain - sufficient for existence of the inertial range and the energy cascade in decaying turbulence (zero driving force, non-increasing global energy). Several manifestations of the locality of the flux under this condition are obtained. All the scales involved are actual physical scales in R^3 and no regularity or homogeneity/scaling assumptions are made.Comment: 21 pages, 2 figures; accepted to Comm. Math. Phy

    ANOMALOUS SCALING OF THE PASSIVE SCALAR

    Full text link
    We establish anomalous inertial range scaling of structure functions for a model of advection of a passive scalar by a random velocity field. The velocity statistics is taken gaussian with decorrelation in time and velocity differences scaling as ∣x∣κ/2|x|^{\kappa/2} in space, with 0≤κ<20\leq\kappa < 2. The scalar is driven by a gaussian forcing acting on spatial scale LL and decorrelated in time. The structure functions for the scalar are well defined as the diffusivity is taken to zero and acquire anomalous scaling behavior for large pumping scales LL. The anomalous exponent is calculated explicitly for the 4^{\m\rm th} structure function and for small κ\kappa and it differs from previous predictions. For all but the second structure functions the anomalous exponents are nonvanishing.Comment: 8 pages, late

    Numerical Investigation of Graph Spectra and Information Interpretability of Eigenvalues

    Full text link
    We undertake an extensive numerical investigation of the graph spectra of thousands regular graphs, a set of random Erd\"os-R\'enyi graphs, the two most popular types of complex networks and an evolving genetic network by using novel conceptual and experimental tools. Our objective in so doing is to contribute to an understanding of the meaning of the Eigenvalues of a graph relative to its topological and information-theoretic properties. We introduce a technique for identifying the most informative Eigenvalues of evolving networks by comparing graph spectra behavior to their algorithmic complexity. We suggest that extending techniques can be used to further investigate the behavior of evolving biological networks. In the extended version of this paper we apply these techniques to seven tissue specific regulatory networks as static example and network of a na\"ive pluripotent immune cell in the process of differentiating towards a Th17 cell as evolving example, finding the most and least informative Eigenvalues at every stage.Comment: Forthcoming in 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO), Lecture Notes in Bioinformatics, 201

    Inequalities for means of chords, with application to isoperimetric problems

    Full text link
    We consider a pair of isoperimetric problems arising in physics. The first concerns a Schr\"odinger operator in L2(R2)L^2(\mathbb{R}^2) with an attractive interaction supported on a closed curve Γ\Gamma, formally given by −Δ−αδ(x−Γ)-\Delta-\alpha \delta(x-\Gamma); we ask which curve of a given length maximizes the ground state energy. In the second problem we have a loop-shaped thread Γ\Gamma in R3\mathbb{R}^3, homogeneously charged but not conducting, and we ask about the (renormalized) potential-energy minimizer. Both problems reduce to purely geometric questions about inequalities for mean values of chords of Γ\Gamma. We prove an isoperimetric theorem for pp-means of chords of curves when p≤2p \leq 2, which implies in particular that the global extrema for the physical problems are always attained when Γ\Gamma is a circle. The article finishes with a discussion of the pp--means of chords when p>2p > 2.Comment: LaTeX2e, 11 page
    • …
    corecore