research

Inequalities for means of chords, with application to isoperimetric problems

Abstract

We consider a pair of isoperimetric problems arising in physics. The first concerns a Schr\"odinger operator in L2(R2)L^2(\mathbb{R}^2) with an attractive interaction supported on a closed curve Γ\Gamma, formally given by Δαδ(xΓ)-\Delta-\alpha \delta(x-\Gamma); we ask which curve of a given length maximizes the ground state energy. In the second problem we have a loop-shaped thread Γ\Gamma in R3\mathbb{R}^3, homogeneously charged but not conducting, and we ask about the (renormalized) potential-energy minimizer. Both problems reduce to purely geometric questions about inequalities for mean values of chords of Γ\Gamma. We prove an isoperimetric theorem for pp-means of chords of curves when p2p \leq 2, which implies in particular that the global extrema for the physical problems are always attained when Γ\Gamma is a circle. The article finishes with a discussion of the pp--means of chords when p>2p > 2.Comment: LaTeX2e, 11 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019