403 research outputs found

    The Lyman-alpha Forest as a Cosmological Tool

    Get PDF
    We review recent developments in the theory of the Lyman-alpha forest and their implications for the role of the forest as a test of cosmological models. Simulations predict a relatively tight correlation between the local Lya optical depth and the local gas or dark matter density. Statistical properties of the transmitted flux can constrain the amplitude and shape of the matter power spectrum at high redshift, test the assumption of Gaussian initial conditions, and probe the evolution of dark energy by measuring the Hubble parameter H(z). Simulations predict increased Lya absorption in the vicinity of galaxies, but observations show a Lya deficit within Delta_r ~ 0.5 Mpc/h (comoving). We investigate idealized models of "winds" and find that they must eliminate neutral hydrogen out to comoving radii ~1.5 Mpc/h to marginally explain the data. Winds of this magnitude suppress the flux power spectrum by \~0.1 dex but have little effect on the distribution function or threshold crossing frequency. In light of the stringent demands on winds, we consider the alternative possibility that extended Lya emission from target galaxies replaces absorbed flux, but we conclude that this explanation is unlikely. Taking full advantage of the data coming from large telescopes and from the Sloan Digital Sky Survey will require more complete understanding of the galaxy proximity effect, careful attention to continuum determination, and more accurate numerical predictions, with the goal of reaching 5-10% precision on key cosmological quantities.Comment: 13 pages, to appear in "The Emergence of Cosmic Structure," Proceedings of the 13th Annual Astrophysics Conference in Maryland, eds. S. Holt and C. Reynolds, AIP Press, 200

    The Galaxy Proximity Effect in the Lyman-alpha Forest

    Full text link
    Hydrodynamic cosmological simulations predict that the average opacity of the Ly-alpha forest should increase in the neighborhood of galaxies because galaxies form in dense environments. Recent observations (Adelberger et al. 2002) confirm this expectation at large scales, but they show a decrease of absorption at comoving separations Delta_r <~ 1 Mpc/h. We show that this discrepancy is statistically significant, especially for the innermost data point at Delta_r <= 0.5 Mpc/h, even though this data point rests on three galaxy-quasar pairs. Galaxy redshift errors of the expected magnitude are insufficient to resolve the conflict. Peculiar velocities allow gas at comoving distances >~ 1 Mpc/h to produce saturated absorption at the galaxy redshift, putting stringent requirements on any ``feedback'' solution. Local photoionization is insufficient, even if we allow for recurrent AGN activity that keeps the neutral hydrogen fraction below its equilibrium value. A simple ``wind'' model that eliminates all neutral hydrogen in spheres around the observed galaxies can marginally explain the data, but only if the winds extend to comoving radii ~1.5 Mpc/h.Comment: 4 pages, 1 figure; To appear in proceedings of the 13th Annual Astrophysics Conference in College Park, Maryland, The Emergence of Cosmic Structure, eds. S.Holt and C. Reynolds, (AIP

    The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations

    Get PDF
    We examine the global HI properties of galaxies in quarter billion particle cosmological simulations using GADGET-2, focusing on howgalactic outflows impactHI content.We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentumdriven outflows for larger galaxies and energy-driven outflows for dwarfs (σ <75 km s−1). To obtain predicted HI masses, we employ a simple but effective local correction for particle selfshielding and an observationally constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an HI mass function whose faint-end slope of −1.3 agrees well with observations from the Arecibo Fast Legacy ALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in HI fraction versus halo mass, with smaller satellites and/or those in larger haloes more often being HI deficient. At a given stellar mass, HI content correlates with the star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive HI galaxies disappear and the mass function steepens. The global cosmic HI density conspires to remain fairly constant from z ∌ 5→0, but the relative contribution from smaller galaxies increases with redshift.Department of HE and Training approved lis

    The Photon Underproduction Crisis

    Full text link
    We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate required by our simulations to match the observed properties of the low-redshift Lyman-alpha forest is a factor of 5 larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch results in the mean flux decrement of the Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma discrepancy with observations) and a column density distribution of Lyman-alpha forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must be significantly elevated relative to current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.Comment: Submitted to ApJ Letters; 6 pages including 3 figure

    Lyman Break Galaxies and the Lyman-alpha Forest

    Get PDF
    We use hydrodynamic simulations to predict correlations between Lya forest absorption and galaxies at redshift z~3. The probability distribution function (PDF) of Lya flux decrements shifts systematically towards higher values in the vicinity of galaxies, reflecting the overdense environments in which these galaxies reside. The predicted signal remains strong in spectra smoothed over 50-200 km/s, allowing tests with moderate resolution quasar spectra. The strong bias of high redshift galaxies towards high density regions imprints a clear signature on the flux PDF, but the predictions are not sensitive to galaxy baryon mass or star formation rate, and they are similar for galaxies and for dark matter halos. The dependence of the flux PDF on galaxy proximity is sensitive to redshift determination errors, with rms errors of 150-300 km/s substantially weakening the predicted trends. On larger scales, the mean galaxy overdensity in a cube of 5 or 10 Mpc/h (comoving) is strongly correlated with the mean Lya flux decrement on a line of sight through the cube center. The slope of the correlation is ~3 times steeper for galaxies than for dark matter as a result of galaxy bias. The predicted large scale correlation is in qualitative agreement with recently reported observational results. However, observations also show a drop in absorption in the immediate vicinity of galaxies, which our models do not predict even if we allow the galaxies or AGNs within them to be ionizing sources. This decreased absorption could be a signature of galaxy feedback on the surrounding IGM, perhaps via galactic winds. Peculiar velocities often allow gas at comoving distances ~1.5 Mpc/h to produce saturated absorption at the galaxy redshift, so any feedback mechanism must suppress neutral hydrogen out to these radii to match the data. (Abridged)Comment: 54 pages, 19 figures. Accepted for publication in ApJ. Includes discussion of simple wind model

    Lyman-alpha Emission From Cosmic Structure I: Fluorescence

    Get PDF
    We present predictions for the fluorescent Lyman-alpha emission signature arising from photoionized, optically thick structures in Smoothed Particle Hydrodynamic (SPH) cosmological simulations of a Lambda-CDM universe using a Monte Carlo Lyman-alpha radiative transfer code. We calculate the expected Lyman-alpha image and 2-dimensional spectra for gas exposed to a uniform ultraviolet ionizing background as well as gas exposed additionally to the photoionizing radiation from a local quasar, after correcting for the self-shielding of hydrogen. As a test of our numerical methods and for application to current observations, we examine simplified analytic structures that are uniformly or anisotropically illuminated. We compare these results with recent observations. We discuss future observing campaigns on large telescopes and realistic strategies for detecting fluorescence owing to the ambient metagalactic ionization and in regions close to bright quasars. While it will take hundreds of hours on the current generation of telescopes to detect fluorescence caused by the ultraviolet background (UVB) alone, our calculations suggest that of order ten sources of quasar-induced fluorescent Lyman-alpha emission should be detectable after a 10 hour exposure in a 10 arcmin^2 field around a bright quasar. These observations will help probe the physical conditions in the densest regions of the intergalactic medium as well as the temporal light curves and isotropy of quasar radiation.Comment: Submitted to ApJ. 64 pages including 25 figures. High resolution version available at http://www.ociw.edu/~jak/lya_volume1.pd

    The COS-Dwarfs Survey: The Carbon Reservoir Around sub-L* Galaxies

    Full text link
    We report new observations of circumgalactic gas from the COS-Dwarfs survey, a systematic investigation of the gaseous halos around 43 low-mass z ≀\leq 0.1 galaxies using background QSOs observed with the Cosmic Origins Spectrograph. From the projected 1D and 2D distribution of C IV absorption, we find that C IV absorption is detected out to ~ 0.5 Rvir_{vir} of the host galaxies. The C IV absorption strength falls off radially as a power law and beyond 0.5 Rvir_{vir}, no C IV absorption is detected above our sensitivity limit of ~ 50-100 mA˚\AA. We find a tentative correlation between detected C IV absorption strength and star formation, paralleling the strong correlation seen in highly ionized oxygen for L~L* galaxies by the COS-Halos survey. The data imply a large carbon reservoir in the CGM of these galaxies, corresponding to a minimum carbon mass of ≳\gtrsim 1.2×106\times 10^6 M⊙M_\odot out to ~ 110 kpc. This mass is comparable to the carbon mass in the ISM and more than the carbon mass currently in stars of these galaxies. The C IV absorption seen around these sub-L* galaxies can account for almost two-thirds of all WrW_r> 100 mA˚\AA C IV absorption detected at low z. Comparing the C IV covering fraction with hydrodynamical simulations, we find that an energy-driven wind model is consistent with the observations whereas a wind model of constant velocity fails to reproduce the CGM or the galaxy properties.Comment: 18 Pages, 11 Figures, ApJ 796 13

    Hydrogen and Metal Line Absorption Around Low-Redshift Galaxies in Cosmological Hydrodynamic Simulations

    Full text link
    We study the physical conditions of the circum-galactic medium (CGM) around z=0.25 galaxies as traced by HI and metal line absorption, using cosmological hydrodynamic simulations that include galactic outflows. Using lines of sight targeted at impact parameters from 10 kpc to 1 Mpc around galaxies with halo masses from 10^11-10^13 M_solar, we study the physical conditions and their variation with impact parameter b and line-of-sight velocity delta v in the CGM as traced by HI, MgII, SiIV, CIV, OVI, and NeVIII absorbers. All ions show a strong excess of absorption near galaxies compared to random lines of sight. The excess continues beyond 1 Mpc, reflecting the correlation of metal absorption with large-scale structure. Absorption is particularly enhanced within about v<300 km/sec and roughly 300 kpc of galaxies (with distances somewhat larger for the highest ion), approximately delineating the CGM; this range contains the majority of global metal absorption. Low ions like MgII and SiIV predominantly arise in denser gas closer to galaxies and drop more rapidly with b, while high ions OVI and NeVIII trace more diffusely distributed gas with a comparatively flat radial profile; CIV is intermediate. All ions predominantly trace T~10^4-4.5 K photo-ionised gas at all b, but when hot CGM gas is present (mostly in larger halos), we see strong collisionally-ionised OVI and NeVIII at b <= 100 kpc. Larger halo masses generally produce more absorption, though overall the trends are not as strong as that with impact parameter. These findings arise using our favoured outflow scalings as expected for momentum-driven winds; with no winds, the CGM gas remains mostly unenriched, while our outflow model with a constant velocity and mass loading factor produce hotter, more widely dispersed metals.Comment: 26 pages, 15 figures, published in MNRAS. Updates to citations from previous versio
    • 

    corecore