382 research outputs found

    The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition

    Get PDF
    Novel targets of the oncogenic miR-17-92 cluster have been identified and the mechanism of regulation of proliferation at the G1/S phase cell cycle transition via the miR-17-5p microRNA has been elucidated

    Aerobic fitness mediates the intervention effects of a school-based physical activity intervention on academic performance. The school in Motion study - A cluster randomized controlled trial.

    Get PDF
    Little information exists on the mechanism of how physical activity interventions effects academic performance. We examined whether the effects of a school-based physical activity intervention on academic performance were mediated by aerobic fitness. The School in Motion study was a nine-month cluster randomized controlled trial between September 2017 and June 2018. Students from 30 Norwegian lower secondary schools (N = 2,084, mean age [SD] = 14 [0.3] years) were randomly assigned into three groups: the Physically Active Learning (PAL) intervention (n = 10), the Don't Worry-Be Happy (DWBH) intervention (n = 10), or control (n = 10). Aerobic fitness was assessed by the Andersen test and academic performance by national tests in reading and numeracy. Mediation was assessed according to the causal steps approach using linear mixed models. In the PAL intervention, aerobic fitness partially mediated the intervention effect on numeracy by 28% from a total effect of 1.73 points (95% CI: 1.13 to 2.33) to a natural direct effect of 1.24 points (95% CI: 0.58 to 1.91), and fully mediated the intervention effect on reading, with the total effect of 0.89 points (95% CI: 0.15 to 1.62) reduced to the natural direct effect of 0.40 points (95% CI: -0.48 to 1.28). Aerobic fitness did not mediate the effects on academic performance in the DWBH intervention. As aerobic fitness mediated the intervention effect on academic performance in one intervention, physical activity of an intensity that increases aerobic fitness is one strategy to improve academic performance among adolescents.Medical Research Council (grant number MC_UU_00006/5)

    Energy efficient plasma processing of industrial wastes

    Get PDF
    The paper presents the results of thermodynamic modeling of the process of joint plasma treatment of non-combustible and combustible industrial wastes. The compositions of water-salt-organic compositions based on these wastes and regimes providing their energy-efficient joint treatment in air plasma have been determined

    Tunable anisotropy in inverse opals and emerging optical properties

    Get PDF
    Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the realizable structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method to introduce anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol-gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure, while completely avoiding the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies clearly identify increasing degrees of sol-gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature

    An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Get PDF
    Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted

    Physical Activity and Pediatric Obesity:A Quantile Regression Analysis

    Get PDF
    PURPOSE: We aimed to determine if moderate-to-vigorous physical activity (MVPA) and sedentary behavior (SB) were independently associated with body mass index (BMI) and waist circumference (WC) in children and adolescents. METHODS: Data from the International Children’s Accelerometry Database (ICAD) were used to address our objectives (N=11,115; 6-18y; 51% female). We calculated age and gender specific body mass index (BMI) and waist circumference (WC) Z-scores and used accelerometry to estimate MVPA and total SB. Self-reported television viewing was used as a measure of leisure time SB. Quantile regression was used to analyze the data. RESULTS: MVPA and total SB were associated with lower and higher BMI and WC Z-scores, respectively. These associations were strongest at the higher percentiles of the Z-score distributions. After including MVPA and total SB in the same model the MVPA associations remained, but the SB associations were no longer present. For example, each additional hour per day of MVPA was not associated with BMI Z-score at the 10(th) percentile (b=-0.02, P=0.170), but was associated with lower BMI Z-score at the 50(th) (b=-0.19, P<0.001) and 90(th) percentiles (b=-0.41, P<0.001). More television viewing was associated with higher BMI and WC and the associations were strongest at the higher percentiles of the Z-score distributions, with adjustment for MVPA and total SB. CONCLUSIONS: Our observation of stronger associations at the higher percentiles indicate that increasing MVPA and decreasing television viewing at the population-level could shift the upper tails of the BMI and WC frequency distributions to lower values, thereby lowering the number of children and adolescents classified as obese

    Luminescent surfaces with tailored angular emission for compact dark-field imaging devices

    Get PDF
    Dark-field microscopy is a standard imaging technique widely employed in biology that provides high image contrast for a broad range of unstained specimens1. Unlike bright-field microscopy, it accentuates high spatial frequencies and can therefore be used to emphasize and resolve small features. However, the use of dark-field microscopy for reliable analysis of blood cells, bacteria, algae and other marine organisms often requires specialized, bulky microscope systems, as well as expensive additional components, such as dark-field-compatible objectives or condensers2,3. Here, we propose to simplify and downsize dark-field microscopy equipment by generating the high-angle illumination cone required for dark-field microscopy directly within the sample substrate. We introduce a luminescent photonic substrate with a controlled angular emission profile and demonstrate its ability to generate high-contrast dark-field images of micrometre-sized living organisms using standard optical microscopy equipment. This new type of substrate forms the basis for miniaturized lab-on-chip dark-field imaging devices that are compatible with simple and compact light microscopes

    A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells

    Get PDF
    Background: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. Methodology/Principal Findings: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. Significance: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency

    Retrieval and Validation of Carbon Dioxide, Methane, and Water Vapor for the Canary Islands IR-Laser Occultation Experiment

    Get PDF
    The first ground-based experiment to prove the concept of a novel space-based observation technique for microwave and infrared-laser occultation between low-Earthorbit satellites was performed in the Canary Islands between La Palma and Tenerife. For two nights from 21 to 22 July 2011 the experiment delivered the infrared-laser differential transmission principle for the measurement of greenhouse gases (GHGs) in the free atmosphere. Such global and long-term stable measurements of GHGs, accompanied also by measurements of thermodynamic parameters and line-of-sight wind in a self-calibrating way, have become very important for climate change monitoring. The experiment delivered promising initial data for demonstrating the new observation concept by retrieving volume mixing ratios of GHGs along a ~ 144 km signal path at altitudes of ~ 2.4 km. Here, we present a detailed analysis of the measurements, following a recent publication that introduced the experiment\u27s technical setup and first results for an example retrieval of CO2. We present the observational and validation data sets, the latter simultaneously measured at the transmitter and receiver sites; the measurement data handling; and the differential transmission retrieval procedure. We also determine the individual and combined uncertainties influencing the results and present the retrieval results for 12CO2, 13CO2, C18OO, H2O and CH4. The new method is found to have a reliable basis for monitoring of greenhouse gases such as CO2, CH4, and H2O in the free atmosphere
    corecore