48 research outputs found

    Spectroscopic characterization and detection of Ethyl Mercaptan in Orion

    Full text link
    New laboratory data of ethyl mercaptan, CH3_{3}CH2_{2}SH, in the millimeter and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauchegauche-CH3_3CH2_2SH towards Orion KL. 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz support this identification. A detection of methyl mercaptan, CH3_{3}SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is \simeq 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.Comment: Accepted for publication in ApJL (30 January 2014)/ submitted (8 January 2014

    Searching for Trans Ethyl Methyl Ether in Orion KL

    Full text link
    We report on the tentative detection of transtrans Ethyl Methyl Ether (tEME), tCH3CH2OCH3t-CH_3CH_2OCH_3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauchegauche-transtrans-n-propanol, GtnCH3CH2CH2OHGt-n-CH_3CH_2CH_2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are (4.0±0.8)×1015cm2\leq(4.0\pm0.8)\times10^{15} cm^{-2} and (1.0±0.2)×1015cm2\leq(1.0\pm0.2)\times10^{15} cm^{-2} for tEME and Gt-n-propanol, respectively. The rotational temperature is 100K\sim100 K for both molecules. We also provide maps of CH3OCOHCH_3OCOH, CH3CH2OCOHCH_3CH_2OCOH, CH3OCH3CH_3OCH_3, CH3OHCH_3OH, and CH3CH2OHCH_3CH_2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME)150N(CH_3OCH_3)/N(tEME)\geq150 in the compact ridge of Orion.Comment: Accepted in A&A Letter

    A comprehensive rotational study of interstellar iso-propyl Cyanide up to 480 GHz

    No full text
    A detailed analysis of the rotational spectra of the interstellar iso-propyl cyanide has been carried out up to 480 GHz using three different high-resolution spectroscopic techniques. Jet-cooled broadband chirped pulse Fourier transform microwave spectroscopy from 6 to 18 GHz allowed us to measure and analyze the ground-state rotational transitions of all singly substituted C and N isotopic species in their natural abundances. The monohydrate of iso-propyl cyanide, in which the water molecule bounds through a stronger O-H⋯N and weaker bifurcated (C-H)⋯O hydrogen bonds in a C configuration, has also been detected in the supersonic expansion. Stark-modulation spectroscopy in the microwave and millimeter wave range from 18 to 75 GHz allowed us to analyze the vibrational satellite pattern arising from pure rotational transitions in the low-lying vibrational excited states. Finally, assignments and measurements were extended through the millimeter and submillimeter wave region. The room temperature rotational spectra made possible the assignment and analysis of pure rotational transitions in 19 vibrationally excited states. Significant perturbations were found above 100 GHz in most of the observed excited states. Due to the complexity of the interactions and importance of this astrophysical region for future radioastronomical detection, both a graphical plot approach and a coupled fit have been used to assign and measure almost 10,000 new lines.The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC-2013-SyG, grant agreement No. 610256 NANOCOSMOS, Ministerio de Ciencia e Innovacin (grants CTQ2013-40717-P, AYA2012-32032, and Consolider-Ingenio 2010 CSD2009-00038 program >ASTROMOL>), and Junta de Castilla y Len (grants VA070A08 and VA175U13). E.R.A. thanks Ministerio de Ciencia e Innovación for an FPI grant (BES-2014-067776)

    Millimeter wave spectra of ethyl isocyanate and searches for it in Orion KL and Sagittarius B2

    No full text
    Context. Relatively high abundances of methyl isocyanate (CH3NCO), a methyl derivative of isocyanic acid (HNCO), found in the Orion KL and Sgr B2 molecular clouds suggest that its ethyl derivative, ethyl isocyanate (CH3CH2NCO), may also be present. Aims. The aim of this work is to provide accurate experimental frequencies of ethyl isocyanate in its ground and excited vibrational states in the millimeter wave region to support searches for it in the interstellar medium. Methods. The rotational spectrum of ethyl isocyanate was recorded at room temperature from 80 to 340 GHz using the millimeter wave spectrometer in Valladolid. Assigned rotational transitions were analyzed using the S -reduced semirigid-rotor Hamiltonian. Results. More than 1100 distinct frequency lines were analyzed for the ground vibrational state of the cis conformer as well as for three vibrational satellites corresponding to successive excitation of the lowest-frequency C–N torsional mode. Newly determined rotational and centrifugal distortion constants were used for searches of spectral features of ethyl isocyanate in Orion KL and Sgr B2 clouds. Upper limits to CH3CH2NCO in these high-mass star-forming regions were obtained

    Laboratory millimeter wave spectrum and astronomical search for vinyl acetate

    No full text
    Context. The recent discovery of methyl acetate in Orion KL makes vinyl acetate, CH3C=OOCH=CH2, a potential molecule in the interstellar medium. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of its rotational spectra which can be used to predict those transition frequencies towards interstellar sources. Aims. We present the experimental study and theoretical analysis of the ground torsional state of vinyl acetate in a large spectral range for astrophysical use. Methods. The room-temperature rotational spectrum of vinyl acetate has been measured from 125 to 305 GHz to provide direct frequencies to the astronomical community. Additional measurements have also been made using a broadband CP-FTMW spectrometer in the region of 6−18 GHz. Transition lines, corresponding to the most stable conformer, have been observed and assigned. All the rotational transitions revealed the A-E splitting due to the methyl internal rotation and had to be treated with a specific internal rotation code (BELGI-Cs). Results. We analyzed 2508 transitions up to J′′ = 75 for vt = 0 for the most stable conformer of vinyl acetate. The new lines were globally fitted with previously published data and 24 parameters of the Hamiltonian were accurately determined. The spectral features of vinyl acetate were then searched for in Orion KL. Using the whole line survey of Orion KL (80−280 GHz) obtained with the IRAM 30 m radio telescope we can provide only an upper limit to the column density of vinyl acetate. However, using the ALMA science verification data we obtain a tentative detection of this species that will require further search at other frequencies to confirm its presence in this high mass star forming region

    Laboratory millimeter wave spectrum and astronomical search for vinyl acetate

    No full text
    [Context] The recent discovery of methyl acetate in Orion KL makes vinyl acetate, CH3C=OOCH=CH2, a potential molecule in the interstellar medium. We obtained very accurate spectroscopic constants in a comprehensive laboratory analysis of its rotational spectra which can be used to predict those transition frequencies towards interstellar sources.[Aims] We present the experimental study and theoretical analysis of the ground torsional state of vinyl acetate in a large spectral range for astrophysical use.[Methods] The room-temperature rotational spectrum of vinyl acetate has been measured from 125 to 305 GHz to provide direct frequencies to the astronomical community. Additional measurements have also been made using a broadband CP-FTMW spectrometer in the region of 6−18 GHz. Transition lines, corresponding to the most stable conformer, have been observed and assigned. All the rotational transitions revealed the A-E splitting due to the methyl internal rotation and had to be treated with a specific internal rotation code (BELGI-Cs).[Results] We analyzed 2508 transitions up to J′′ = 75 for vt = 0 for the most stable conformer of vinyl acetate. The new lines were globally fitted with previously published data and 24 parameters of the Hamiltonian were accurately determined. The spectral features of vinyl acetate were then searched for in Orion KL. Using the whole line survey of Orion KL (80−280 GHz) obtained with the IRAM 30 m radio telescope we can provide only an upper limit to the column density of vinyl acetate. However, using the ALMA science verification data we obtain a tentative detection of this species that will require further search at other frequencies to confirm its presence in this high mass star forming region.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC-2013-SyG, Grant Agreement No. 610256 NANOCOSMOS, Ministerio de Ciencia e Innovación (Grants CTQ2010-19008, CTQ2013-40717-P, and Consolider-Ingenio 2010 CSD2009-00038 program “ASTROMOL”) and Junta de Castilla y León (Grants VA070A08 and VA175U13)

    Rotational spectrum of methoxyamine up to 480 GHz: a laboratory study and astronomical search

    No full text
    Aims. Methoxyamine is a potential interstellar amine that has been predicted by gas-grain chemical models for the formation of complex molecules. The aim of this work is to provide direct experimental frequencies of its ground-vibrational state in the millimeter- and submillimeter-wave regions to achieve its detection in the interstellar medium. Methods. Methoxyamine was chemically liberated from its hydrochloride salt, and its rotational spectrum was recorded at room temperature from 75 to 480 GHz using the millimeter-wave spectrometer in Valladolid. Many observed transitions revealed A−E splitting caused by the internal rotation of the methyl group, which had to be treated with specific internal rotation codes. Results. Over 400 lines were newly assigned for the most stable conformer of methoxyamine, and a precise set of spectroscopic constants was obtained. Spectral features of methoxyamine were then searched for in the Orion KL, Sgr B2, B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methoxyamine were derived
    corecore