8 research outputs found

    Distribution and chemical coding pattern of the cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in the preoptic area of the pig

    Get PDF
    This study provides a detailed description of cocaine-and amphetamine-regulated transcript (CART) distribution and the co-localization pattern of CART and gonadotropin releasing hormone (GnRH), somatostatin (SOM), neuropeptide Y (NPY), cholecystokinin (CCK), and substance P (SP) in the preoptic area (POA) of the domestic pig. The POA displays a low density of immunoreactive cells and rich immunoreactivity for CART in fibers. CART-immunoreactive (CART-IR) cell bodies were single and faintly stained, and located in the medial preoptic area (MPA) and the periventricular region of the POA. A high density of immunoreactive fibers was observed in the periventricular preoptic nucleus (PPN); a high to moderate density of fibers was observed in the MPA; but in the dorso-medial region of the MPA the highest density of fibers in the whole POA was observed. The lateral preoptic area (LPA) exhibited a less dense concentration of CART-immunoreactive fibers than the MPA. The median preoptic nucleus (MPN) showed moderate to low expression of staining fibers. In the present study, dual-labeling immunohistochemistry was used to show that CART-IR cell bodies do not contain any GnRH and SP. CART-positive fibers were identified in close apposition with GnRH neurons. This suggests that CART may influence GnRH secretion. Double staining revealed that CART-IR structures do not co-express any of the substances we studied, but a very small population of CART-IR fibers also contain SOM, CCK or SP. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 604–614

    Somatostatin-like immunoreactivity in the amygdala of the pig.

    Get PDF
    The distribution and morphology of neurons containing somatostatin (SOM) was investigated in the amygdala (CA) of the pig. The SOM-immunoreactive (SOM-IR) cell bodies and fibres were present in all subdivisions of the porcine CA, however, their number and density varied depending on the nucleus studied. The highest density of SOM-positive somata was observed in the layer III of the cortical nuclei, in the anterior (magnocellular) part of the basomedial nucleus and in the caudal (large-celled) part of the lateral nucleus. Moderate to high numbers of SOM-IR cells were also observed in the medial and basolateral nuclei. Many labeled neurons were also consistently observed in the lateral part of the central nucleus. In the remaining CA regions, the density of SOM-positive cell bodies varied from moderate to low. In any CA region studied SOM-IR neurons formed heterogeneous population consisting of small, rounded or slightly elongated cell bodies, with a few poorly branched smooth dendrites. In general, morphological features of these cells clearly resembled the non-pyramidal Golgi type II interneurons. The routine double-labeling studies with antisera directed against SOM and neuropeptide Y (NPY) demonstrated that a large number of SOM-IR cell bodies and fibers in all studied CA areas contained simultaneously NPY. In contrast, co-localization of SOM and cholecystokinin (CCK) or SOM and vasoactive intestinal polypeptide (VIP) was never seen in cell bodies and fibres in any of nuclei studied. In conclusion, SOM-IR neurons of the porcine amygdala form large and heterogeneous subpopulation of, most probably, interneurons that often contain additionally NPY. On the other hand, CCK- and/or VIP-IR neurons belonged to another, discrete subpopulations of porcine CA neurons

    Diagnosis and Incidence of Spondylosis and Cervical Disc Disorders in the University Clinical Hospital in Olsztyn, in Years 2011–2015

    No full text
    Background. Disorders connected with the musculoskeletal and central nervous system dysfunction are the most significant clinical problem worldwide. Our earlier research has shown that back and spinal disorders and lumbar disc disorders were most frequently diagnosed using MRI scanner at the University Clinical Hospital (UCH) in Olsztyn in years 2011–2015. We have also observed that another two diseases of spinal column, spondylosis and cervical disc disorders, were also very prevalent. The main objective of this work was to analyze the prevalence of spondylosis and cervical disc disorders in the study population diagnosed at UCH in years 2011–2015. Methods. The digital database including patients’ diagnostic and demographic information was generated based on MRI reports from years 2011–2015 and analyzed using SPSS software. Results. Within the study group (n=13298) the most frequently MRI-diagnosed diseases were musculoskeletal group (M00–M99; n=7711; 57,98%) and cervical disc disorders (M50; n=1659; 12,47%) and spondylosis (M47, n=611; 4,59%). More women (67%) than men (33%) were enrolled in the study, and the largest fraction of the study population was in the range of 51–60 years, with about 1/3 of cases of both diseases diagnosed in early age range of 31–40 years. Conclusion. Significant number of patients presenting with either of the spine disorders at the young age of 31–40 years points to the necessity of introducing methods preventing disorders of the vertebral column at younger age, preferably at school age

    Somatostatin-like immunoreactivity in the amygdala of the pig.

    No full text
    The distribution and morphology of neurons containing somatostatin (SOM) was investigated in the amygdala (CA) of the pig. The SOM-immunoreactive (SOM-IR) cell bodies and fibres were present in all subdivisions of the porcine CA, however, their number and density varied depending on the nucleus studied. The highest density of SOM-positive somata was observed in the layer III of the cortical nuclei, in the anterior (magnocellular) part of the basomedial nucleus and in the caudal (large-celled) part of the lateral nucleus. Moderate to high numbers of SOM-IR cells were also observed in the medial and basolateral nuclei. Many labeled neurons were also consistently observed in the lateral part of the central nucleus. In the remaining CA regions, the density of SOM-positive cell bodies varied from moderate to low. In any CA region studied SOM-IR neurons formed heterogeneous population consisting of small, rounded or slightly elongated cell bodies, with a few poorly branched smooth dendrites. In general, morphological features of these cells clearly resembled the non-pyramidal Golgi type II interneurons. The routine double-labeling studies with antisera directed against SOM and neuropeptide Y (NPY) demonstrated that a large number of SOM-IR cell bodies and fibers in all studied CA areas contained simultaneously NPY. In contrast, co-localization of SOM and cholecystokinin (CCK) or SOM and vasoactive intestinal polypeptide (VIP) was never seen in cell bodies and fibres in any of nuclei studied. In conclusion, SOM-IR neurons of the porcine amygdala form large and heterogeneous subpopulation of, most probably, interneurons that often contain additionally NPY. On the other hand, CCK- and/or VIP-IR neurons belonged to another, discrete subpopulations of porcine CA neurons
    corecore