229 research outputs found

    Space Shuttle Solid Rocket Booster Lightweight Recovery System

    Get PDF
    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria

    A stratified compartmental model for the transmission of Sparicotyle chrysophrii (Platyhelminthes: Monogenea) in gilthead seabream (Sparus aurata) fish farms †

    Get PDF
    The rapid development of intensive fish farming has been associated with the spreading of infectious diseases, pathogens and parasites. One such parasite is Sparicotyle chrysophrii (Platyhelminthes: Monogenea), which commonly infects cultured gilthead seabream (Sparus aurata)-a vital species in Mediterranean aquaculture. The parasite attaches to fish gills and can cause epizootics in sea cages with relevant consequences for fish health and associated economic losses for fish farmers. In this study, a novel stratified compartmental epidemiological model of S. chrysophrii transmission was developed and analysed. The model accounts for the temporal progression of the number of juvenile and adult parasites attached to each fish, as well as the abundance of eggs and oncomiracidia. We applied the model to data collected in a seabream farm, where the fish population and the number of adult parasites attached to fish gills were closely monitored in six different cages for 10 months. The model successfully replicated the temporal dynamics of the distribution of the parasite abundance within fish hosts and simulated the effects of environmental factors, such as water temperature, on the transmission dynamics. The findings highlight the potential of modelling tools for farming management, aiding in the prevention and control of S. chrysophrii infections in Mediterranean aquaculture

    Nutraceutical Profiles of Two Hydroponically Grown Sweet Basil Cultivars as Affected by the Composition of the Nutrient Solution and the Inoculation With Azospirillum brasilense

    Get PDF
    Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO42\u2013 or NO3\u2013, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation

    MHC-IIB Filament Assembly and Cellular Localization Are Governed by the Rod Net Charge

    Get PDF
    Actin-dependent myosin II molecular motors form an integral part of the cell cytoskeleton. Myosin II molecules contain a long coiled-coil rod that mediates filament assembly required for myosin II to exert its full activity. The exact mechanisms orchestrating filament assembly are not fully understood., negatively-charged regions of the coiled-coil were found to play an important role by controlling the intracellular localization of native MHC-IIB. The entire positively-charged region is also important for intracellular localization of native MHC-IIB.A correct distribution of positive and negative charges along myosin II rod is a necessary component in proper filament assembly and intracellular localization of MHC-IIB

    Cultural and serological analysis of the salmonella status of Australian pig production

    Get PDF
    The microbiological quality of food of animal origin is receiving widespread scrutiny as outbreaks of food-borne disease are increasingly reported in developed countries. In Australia, the pig industry has embarked on a national program to define and enhance the quality, including microbiological quality, of pig meat. The National Pig Meat Hygiene Program (PMHP) is part of this initiative, and aims to develop baseline data for microorganisms on pig meat, including public health pathogens, and to develop and implement management strategies to enhance the microbial quality of Australia\u27s pig meat production. The study reported here measured salmonella contamination on pig meat and carcases sampled nationwide, and adapted and validated an enzyme linked immunosorbent assay (ELISA) for evaluating the salmonella infection status of pig herds

    Proteomics analysis of serum protein profiling in pancreatic cancer patients by DIGE: up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer has significant morbidity and mortality worldwide. Good prognosis relies on an early diagnosis. The purpose of this study was to develop techniques for identifying cancer biomarkers in the serum of patients with pancreatic cancer.</p> <p>Methods</p> <p>Serum samples from five individuals with pancreatic cancer and five individuals without cancer were compared. Highly abundant serum proteins were depleted by immuno-affinity column. Differential protein analysis was performed using 2-dimensional differential in-gel electrophoresis (2D-DIGE).</p> <p>Results</p> <p>Among these protein spots, we found that 16 protein spots were differently expressed between the two mixtures; 8 of these were up-regulated and 8 were down-regulated in cancer. Mass spectrometry and database searching allowed the identification of the proteins corresponding to the gel spots. Up-regulation of mannose-binding lectin 2 and myosin light chain kinase 2, which have not previously been implicated in pancreatic cancer, were observed. In an independent series of serum samples from 16 patients with pancreatic cancer and 16 non-cancer-bearing controls, increased levels of mannose-binding lectin 2 and myosin light chain kinase 2 were confirmed by western blot.</p> <p>Conclusions</p> <p>These results suggest that affinity column enrichment and DIGE can be used to identify proteins differentially expressed in serum from pancreatic cancer patients. These two proteins 'mannose-binding lectin 2 and myosin light chain kinase 2' might be potential biomarkers for the diagnosis of the pancreatic cancer.</p

    Myosin II Motor Proteins with Different Functions Determine the Fate of Lamellipodia Extension during Cell Spreading

    Get PDF
    Non-muscle cells express multiple myosin-II motor proteins myosin IIA, myosin IIB and myosin IIC transcribed from different loci in the human genome. Due to a significant homology in their sequences, these ubiquitously expressed myosin II motor proteins are believed to have overlapping cellular functions, but the mechanistic details are not elucidated. The present study uncovered a mechanism that coordinates the distinctly localized myosin IIA and myosin IIB with unexpected opposite mechanical roles in maneuvering lamellipodia extension, a critical step in the initiation of cell invasion, spreading, and migration. Myosin IIB motor protein by localizing at the front drives lamellipodia extension during cell spreading. On the other hand, myosin IIA localizes next to myosin IIB and attenuates or retracts lamellipodia extension. Myosin IIA and IIB increase cell adhesion by regulating focal contacts formation in the spreading margins and central part of the spreading cell, respectively. Spreading cells expressing both myosin IIA and myosin IIB motor proteins display an organized actin network consisting of retrograde filaments, arcs and central filaments attached to focal contacts. This organized actin network especially arcs and focal contacts formation in the spreading margins were lost in myosin IIĂ‚ cells. Surprisingly, myosin IIBĚ‚ cells displayed long parallel actin filaments connected to focal contacts in the spreading margins. Thus, with different roles in the regulation of the actin network and focal contacts formation, both myosin IIA and IIB determine the fate of lamellipodia extension during cell spreading

    The Role of Actin Turnover in Retrograde Actin Network Flow in Neuronal Growth Cones

    Get PDF
    The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network
    • …
    corecore