88 research outputs found

    Granger Causality Mapping during Joint Actions Reveals Evidence for Forward Models That Could Overcome Sensory-Motor Delays

    Get PDF
    Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS) because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI) experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network), here we used Granger causality mapping (GCM) [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum) and more posterior nodes of the pMNS (BA2). Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays

    Taking two to tango:fMRI analysis of improvised joint action with physical contact

    Get PDF
    <div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div

    Identifying the charge generation dynamics in a Cs+-based triple cation mixed perovskite solar cells

    No full text
    Triple cation based perovskite solar cells offers enhanced moisture tolerance and stability compare to mixed perovskites. A slight substitution of methyl ammonium or formamidinium cation by cesium (Cs+), was also reported to eliminate halide segregation due to its smaller size. To elucidate the device kinetics and understand the role of Cs, we undertook different mode of scanning probe microscopy and electrochemical impedance spectroscopy (EIS) experiments. Kelvin probe force microscopy revealed that the incorporation of Cs cation increases the contact potential difference (CPD), this CPD further increases when Spiro-OMeTAD was used as a hole transport material. The current at nanoscale level shows improvement with Cs inclusion and further enhancement by the Spiro-OMeTAD coating under illumination, which supports the high photocurrent density obtained from the cells. EIS demonstrates that in a triple cation environment, reduce carrier recombination at the TiO2 /perovskite interface was also obtained which in turn allow to acheive higher Voc value
    corecore