3,816 research outputs found
Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes
Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm
Validation of the performance of a GMO multiplex screening assay based on microarray detection
A new screening method for the detection and identification of GMO, based on the use of multiplex PCR followed by microarray, has been developed and is presented. The technology is based on the identification of quite ubiquitous GMO genetic target elements first amplified by PCR, followed by direct hybridisation of the amplicons on a predefined microarray (DualChip® GMO, Eppendorf, Germany). The validation was performed within the framework of a European project (Co-Extra, contract no 007158) and in collaboration with 12 laboratories specialised in GMO detection. The present study reports the strategy and the results of an ISO complying validation of the method carried out through an inter-laboratory study. Sets of blind samples were provided consisting of DNA reference materials covering all the elements detectable by specific probes present on the array. The GMO concentrations varied from 1% down to 0.045%. In addition, a mixture of two GMO events (0.1% RRS diluted in 100% TOPAS19/2) was incorporated in the study to test the robustness of the assay in extreme conditions. Data were processed according to ISO 5725 standard. The method was evaluated with predefined performance criteria with respect to the EC CRL method acceptance criteria. The overall method performance met the acceptance criteria; in particular, the results showed that the method is suitable for the detection of the different target elements at 0.1% concentration of GMO with a 95% accuracy rate. This collaborative trial showed that the method can be considered as fit for the purpose of screening with respect to its intra- and inter-laboratory accuracy. The results demonstrated the validity of combining multiplex PCR with array detection as provided by the DualChip® GMO (Eppendorf, Germany) for the screening of GMO. The results showed that the technology is robust, practical and suitable as a screening too
Differential atom interferometry beyond the standard quantum limit
We analyze methods to go beyond the standard quantum limit for a class of
atomic interferometers, where the quantity of interest is the difference of
phase shifts obtained by two independent atomic ensembles. An example is given
by an atomic Sagnac interferometer, where for two ensembles propagating in
opposite directions in the interferometer this phase difference encodes the
angular velocity of the experimental setup. We discuss methods of squeezing
separately or jointly observables of the two atomic ensembles, and compare in
detail advantages and drawbacks of such schemes. In particular we show that the
method of joint squeezing may improve the variance by up to a factor of 2. We
take into account fluctuations of the number of atoms in both the preparation
and the measurement stage, and obtain bounds on the difference of the numbers
of atoms in the two ensembles, as well as on the detection efficiency, which
have to be fulfilled in order to surpass the standard quantum limit. Under
realistic conditions, the performance of both schemes can be improved
significantly by reading out the phase difference via a quantum non-demolition
(QND) measurement. Finally, we discuss a scheme using macroscopically entangled
ensembles.Comment: 10 pages, 5 figures; eq. (3) corrected and other minor change
Рецензия на руководство для врачей «Профессиональные заболевания у работников железнодорожного транспорта»
Рецензія на посібник: Профессиональные заболевания у работников железнодорожного транспорта: учебное пособие / С.И. Ткач, А.И. Гоженко, А.Е. Лукьяненко, Е.Я. Николенко. -Одесса: Пальмира,2008. - 168 с
The fluctuation energy balance in non-suspended fluid-mediated particle transport
Here we compare two extreme regimes of non-suspended fluid-mediated particle
transport, transport in light and heavy fluids ("saltation" and "bedload",
respectively), regarding their particle fluctuation energy balance. From direct
numerical simulations, we surprisingly find that the ratio between collisional
and fluid drag dissipation of fluctuation energy is significantly larger in
saltation than in bedload, even though the contribution of interparticle
collisions to transport of momentum and energy is much smaller in saltation due
to the low concentration of particles in the transport layer. We conclude that
the much higher frequency of high-energy particle-bed impacts ("splash") in
saltation is the cause for this counter-intuitive behavior. Moreover, from a
comparison of these simulations to Particle Tracking Velocimetry measurements
which we performed in a wind tunnel under steady transport of fine and coarse
sand, we find that turbulent fluctuations of the flow produce particle
fluctuation energy at an unexpectedly high rate in saltation even under
conditions for which the effects of turbulence are usually believed to be
small
Lorentz invariant intrinsic decoherence
Quantum decoherence can arise due to classical fluctuations in the parameters
which define the dynamics of the system. In this case decoherence, and
complementary noise, is manifest when data from repeated measurement trials are
combined. Recently a number of authors have suggested that fluctuations in the
space-time metric arising from quantum gravity effects would correspond to a
source of intrinsic noise, which would necessarily be accompanied by intrinsic
decoherence. This work extends a previous heuristic modification of
Schr\"{o}dinger dynamics based on discrete time intervals with an intrinsic
uncertainty. The extension uses unital semigroup representations of space and
time translations rather than the more usual unitary representation, and does
the least violence to physically important invariance principles. Physical
consequences include a modification of the uncertainty principle and a
modification of field dispersion relations, in a way consistent with other
modifications suggested by quantum gravity and string theory .Comment: This paper generalises an earlier model published as Phys. Rev. A
vol44, 5401 (1991
Crispr/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function
MicroRNAs (miRNAs) are important regulators of diverse physiological and pathophysiological processes. MiRNA families and clusters are two key features in miRNA biology. Here we explore the use of CRISPR/Cas9 as a powerful tool to delineate the function and regulation of miRNA families and clusters. We focused on four miRNA clusters composed of miRNA members of the same family, homoclusters or different families, hetero-clusters. Our results highlight different regulatory mechanisms in miRNA cluster expression. In the case of the miR-497~195 cluster, editing of miR-195 led to a significant decrease in the expression of the other miRNA in the cluster, miR-497a. Although no gene editing was detected in the miR-497a genomic locus, computational simulation revealed alteration in the three dimensional structure of the pri miR-497~195 that may affect its processing. In cluster miR- 143~145 our results imply a feed-forward regulation, although structural changes cannot be ruled out. Furthermore, in the miR-17~92 and miR-106~25 clusters no interdependency in miRNA expression was observed. Our findings suggest that CRISPR/Cas9 is a powerful gene editing tool that can uncover novel mechanisms of clustered miRNA regulation and function
Suitability versus fidelity for rating single-photon guns
The creation of specified quantum states is important for most, if not all,
applications in quantum computation and communication. The quality of the state
preparation is therefore an essential ingredient in any assessment of a
quantum-state gun. We show that the fidelity, under the standard definitions is
not sufficient to assess quantum sources, and we propose a new measure of
suitability that necessarily depends on the application for the source. We
consider the performance of single-photon guns in the context of quantum key
distribution (QKD) and linear optical quantum computation. Single-photon
sources for QKD need radically different properties than sources for quantum
computing. Furthermore, the suitability for single-photon guns is discussed
explicitly in terms of experimentally accessible criteria.Comment: 4 pages, 2 figures Revised per referee suggestion
Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting
Although universal continuous-variable quantum computation cannot be achieved
via linear optics (including squeezing), homodyne detection and feed-forward,
inclusion of ideal photon counting measurements overcomes this obstacle. These
measurements are sometimes described by arrays of beam splitters to distribute
the photons across several modes. We show that such a scheme cannot be used to
implement ideal photon counting and that such measurements necessarily involve
nonlinear evolution. However, this requirement of nonlinearity can be moved
"off-line," thereby permitting universal continuous-variable quantum
computation with linear optics.Comment: 6 pages, no figures, replaced with published versio
- …