5,395 research outputs found

    Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables

    Get PDF
    We reveal a close relationship between quantum metrology and the Deutsch-Jozsa algorithm on continuous-variable quantum systems. We develop a general procedure, characterized by two parameters, that unifies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant, the procedure implements either the parameter-estimation protocol or the Deutsch-Jozsa algorithm. The parameter-estimation part of the procedure attains the Heisenberg limit and is therefore optimal. Due to the use of approximate normalizable continuous-variable eigenstates, the Deutsch-Jozsa algorithm is probabilistic. The procedure estimates a value of an unknown parameter and solves the Deutsch-Jozsa problem without the use of any entanglement

    Effects of self-phase modulation on weak nonlinear optical quantum gates

    Full text link
    A possible two-qubit gate for optical quantum computing is the parity gate based on the weak Kerr effect. Two photonic qubits modulate the phase of a coherent state, and a quadrature measurement of the coherent state reveals the parity of the two qubits without destroying the photons. This can be used to create so-called cluster states, a universal resource for quantum computing. Here, the effect of self-phase modulation on the parity gate is studied, introducing generating functions for the Wigner function of a modulated coherent state. For materials with non-EIT-based Kerr nonlinearities, there is typically a self-phase modulation that is half the magnitude of the cross-phase modulation. Therefore, this effect cannot be ignored. It is shown that for a large class of physical implementations of the phase modulation, the quadrature measurement cannot distinguish between odd and even parity. Consequently, weak nonlinear parity gates must be implemented with physical systems where the self-phase modulation is negligable.Comment: 7 pages, 4 figure

    A Quantum Rosetta Stone for Interferometry

    Get PDF
    Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and the discrete Fourier transform. Based on this equivalence we introduce the ``quantum Rosetta stone'', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method should work in atom spectroscopy.Comment: 8 pages, 4 figure

    Natuur van de rivier : toetsing WNF-plan Levende Rivieren : Eindrapport

    Get PDF

    Feed-forward and its role in conditional linear optical quantum dynamics

    Full text link
    Nonlinear optical quantum gates can be created probabilistically using only single photon sources, linear optical elements and photon-number resolving detectors. These gates are heralded but operate with probabilities much less than one. There is currently a large gap between the performance of the known circuits and the established upper bounds on their success probabilities. One possibility for increasing the probability of success of such gates is feed-forward, where one attempts to correct certain failure events that occurred in the gate's operation. In this brief report we examine the role of feed-forward in improving the success probability. In particular, for the non-linear sign shift gate, we find that in a three-mode implementation with a single round of feed-forward the optimal average probability of success is approximately given by p= 0.272. This value is only slightly larger than the general optimal success probability without feed-forward, P= 0.25.Comment: 4 pages, 3 eps figures, typeset using RevTex4, problems with figures resolve

    Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits

    Get PDF
    We propose a scheme to realize deterministic quantum teleportation using linear optics and hybrid qubits. It enables one to efficiently perform teleportation and universal linear-optical gate operations in a simple and near-deterministic manner using all-optical hybrid entanglement as off-line resources. Our analysis shows that our new approach can outperforms major previous ones when considering both the resource requirements and fault tolerance limits.Comment: 10 pages, 5 figures; extended version, title, abstract and figures changed, details added, to be published in Phys. Rev.

    The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b

    Full text link
    For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass-estimate of the star and subsequently of the orbiting planet. In contrast, if also the orbital velocity of the planet would be known, the masses of both star and planet could be determined directly using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report on the detection of the orbital velocity of extrasolar planet HD209458b. High dispersion ground-based spectroscopy during a transit of this planet reveals absorption lines from carbon monoxide produced in the planet atmosphere, which shift significantly in wavelength due to the change in the radial component of the planet orbital velocity. These observations result in a mass determination of the star and planet of 1.00+-0.22 Msun and 0.64+-0.09 Mjup respectively. A ~2 km/sec blueshift of the carbon monoxide signal with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a CO mixing ratio of 1-3x10-3 in this planet's upper atmosphere.Comment: 11 Pages main article and 6 pages suppl. information: A final, edited version appears in the 24 May 2010 issue of Natur

    Search for water in a super-Earth atmosphere: High-resolution optical spectroscopy of 55 Cancri e

    Get PDF
    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density, super-Earth that orbits a nearby Sun-like star in under 18 hours. The inferred bulk density of the planet implies a substantial envelope, which, according to mass-radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDS on the Subaru telescope and ESPaDOnS on the Canada-France-Hawaii Telescope, we are able to place a 3-sigma lower limit of 10 g/mol on the mean-molecular weight of 55Cnc e's water-rich (volume mixing ratio >10%), optically-thin atmosphere, which corresponds to an atmospheric scale-height of ~80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere and demonstrates that it is possible to recover known water-vapour absorption signals, in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.Comment: Accepted for publication in ApJ 12 pages, 9 figures. Email: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]

    Practical quantum repeaters with linear optics and double-photon guns

    Get PDF
    We show how to create practical, efficient, quantum repeaters, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to one, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical CNOT gates.Comment: 4 pages, 4 figures ReVTe
    • 

    corecore