131 research outputs found
Recommended from our members
Climate models miss most of the coarse dust in the atmosphere.
Coarse mineral dust (diameter, ≥5 μm) is an important component of the Earth system that affects clouds, ocean ecosystems, and climate. Despite their significance, climate models consistently underestimate the amount of coarse dust in the atmosphere when compared to measurements. Here, we estimate the global load of coarse dust using a framework that leverages dozens of measurements of atmospheric dust size distributions. We find that the atmosphere contains 17 Tg of coarse dust, which is four times more than current climate models simulate. Our findings indicate that models deposit coarse dust out of the atmosphere too quickly. Accounting for this missing coarse dust adds a warming effect of 0.15 W·m-2 and increases the likelihood that dust net warms the climate system. We conclude that to properly represent the impact of dust on the Earth system, climate models must include an accurate treatment of coarse dust in the atmosphere
Global and regional importance of the direct dust-climate feedback.
Feedbacks between the global dust cycle and the climate system might have amplified past climate changes. Yet, it remains unclear what role the dust-climate feedback will play in future anthropogenic climate change. Here, we estimate the direct dust-climate feedback, arising from changes in the dust direct radiative effect (DRE), using a simple theoretical framework that combines constraints on the dust DRE with a series of climate model results. We find that the direct dust-climate feedback is likely in the range of -0.04 to +0.02 Wm -2 K-1, such that it could account for a substantial fraction of the total aerosol feedbacks in the climate system. On a regional scale, the direct dust-climate feedback is enhanced by approximately an order of magnitude close to major source regions. This suggests that it could play an important role in shaping the future climates of Northern Africa, the Sahel, the Mediterranean region, the Middle East, and Central Asia
Analytical model for flux saturation in sediment transport
The transport of sediment by a fluid along the surface is responsible for
dune formation, dust entrainment and for a rich diversity of patterns on the
bottom of oceans, rivers, and planetary surfaces. Most previous models of
sediment transport have focused on the equilibrium (or saturated) particle
flux. However, the morphodynamics of sediment landscapes emerging due to
surface transport of sediment is controlled by situations out-of-equilibrium.
In particular, it is controlled by the saturation length characterizing the
distance it takes for the particle flux to reach a new equilibrium after a
change in flow conditions. The saturation of mass density of particles
entrained into transport and the relaxation of particle and fluid velocities
constitute the main relevant relaxation mechanisms leading to saturation of the
sediment flux. Here we present a theoretical model for sediment transport
which, for the first time, accounts for both these relaxation mechanisms and
for the different types of sediment entrainment prevailing under different
environmental conditions. Our analytical treatment allows us to derive a closed
expression for the saturation length of sediment flux, which is general and can
thus be applied under different physical conditions
Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms
Much of the surface of Mars is covered by dunes, ripples, and other features
formed by the blowing of sand by wind, known as saltation. In addition,
saltation loads the atmosphere with dust aerosols, which dominate the Martian
climate. We show here that saltation can be maintained on Mars by wind speeds
an order of magnitude less than required to initiate it. We further show that
the resulting hysteresis effect causes saltation to occur for much lower wind
speeds than previously thought. These findings have important implications for
the formation of dust storms, sand dunes, and ripples on Mars.Comment: 4 pages, 3 figures, published in Physical Review Letter
The physics of wind-blown sand and dust
The transport of sand and dust by wind is a potent erosional force, creates
sand dunes and ripples, and loads the atmosphere with suspended dust aerosols.
This article presents an extensive review of the physics of wind-blown sand and
dust on Earth and Mars. Specifically, we review the physics of aeolian
saltation, the formation and development of sand dunes and ripples, the physics
of dust aerosol emission, the weather phenomena that trigger dust storms, and
the lifting of dust by dust devils and other small-scale vortices. We also
discuss the physics of wind-blown sand and dune formation on Venus and Titan.Comment: 72 journal pagers, 49 figure
Global modeling study of dust source and soluble Fe input to the Southern Ocean
Poster session / International Global Atmospheric Chemistry (IGAC) 2016 Science Conference (26-30 September 2016, Breckenridge, CO, USA
Recommended from our members
Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions
Most global aerosol models approximate dust as spherical particles, whereas most remote sensing retrieval algorithms approximate dust as spheroidal particles with a shape distribution that conflicts with measurements. These inconsistent and inaccurate shape assumptions generate biases in dust single-scattering properties. Here, we obtain dust single-scattering properties by approximating dust as tri-axial ellipsoidal particles with observationally constrained shape distributions. We find that, relative to the ellipsoidal dust optics obtained here, the spherical dust optics used in most aerosol models underestimate dust single-scattering albedo, mass extinction efficiency, and asymmetry parameter for almost all dust sizes in both the shortwave and longwave spectra. We further find that the ellipsoidal dust optics are in substantially better agreement with observations of the scattering matrix and linear depolarization ratio than the spheroidal dust optics used in most retrieval algorithms. However, relative to observations, the ellipsoidal dust optics overestimate the lidar ratio by underestimating the backscattering intensity by a factor of ~2. This occurs largely because the computational method used to simulate ellipsoidal dust optics (i.e., the improved geometric optics method) underestimates the backscattering intensity by a factor of ~2 relative to other computational methods (e.g., the physical geometric optics method). We conclude that the ellipsoidal dust optics with observationally constrained shape distributions can help improve global aerosol models and possibly remote sensing retrieval algorithms that do not use the backscattering signal.</p
- …