46 research outputs found

    Author Correction: Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2.

    Get PDF
    Abstract: Pulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH

    Maintained right ventricular pressure overload induces ventricular-arterial decoupling in mice.

    Get PDF
    Assessment of right ventricular (RV) function in rodents is a challenge due to the complex RV anatomy and structure. Subsequently, the best characterization of RV function is achieved by accurate cardiovascular phenotyping, involving a combination of non-invasive imaging and intra-cardiac pressure-volume measurements. We sought to investigate the feasibility of two complementary phenotyping techniques for the evaluation of RV function in an experimental mouse model of sustained RV pressure overload. Mice underwent either Sham surgery (n = 5) or pulmonary artery banding (PAB) (n = 8) to induce isolated RV pressure overload. After three weeks indices of RV function were assessed by echocardiography (Vevo2100) and closed chest-derived invasive pressure-volume measurements (PVR-1030). PAB resulted in RV hypertrophy and dilatation accompanied by systolic and diastolic dysfunction. Invasive RV hemodynamic measurements demonstrate an increased end-systolic as well as arterial elastance after PAB as compared to sham, resulting in ventricular-arterial decoupling. Regression analysis revealed that TAPSE is rather correlated with ventricular-arterial coupling (r² = 0.77, P = 0.002) than RV contractility (r² = -0.61, P = 0.07). Furthermore, IVRT/RR and E/E' correlate well with RV end-diastolic pressure (r² = 0.87, P = 0.0001 and r² = 0.82, P = 0.0009; respectively). Commonly used indices of systolic RV function are associated with RV-arterial coupling rather than contractility, while diastolic indices are interrelated with end-diastolic pressure where there is maintained pressure overload. This article is protected by copyright. All rights reserved

    Insights into the Black Box of Intra-Amniotic Infection and Its Impact on the Premature Lung: From Clinical and Preclinical Perspectives

    No full text
    Intra-amniotic infection (IAI) is one major driver for preterm birth and has been demonstrated by clinical studies to exert both beneficial and injurious effects on the premature lung, possibly due to heterogeneity in the microbial type, timing, and severity of IAI. Due to the inaccessibility of the intra-amniotic cavity during pregnancies, preclinical animal models investigating pulmonary consequences of IAI are indispensable to elucidate the pathogenesis of bronchopulmonary dysplasia (BPD). It is postulated that on one hand imbalanced inflammation, orchestrated by lung immune cells such as macrophages, may impact on airway epithelium, vascular endothelium, and interstitial mesenchyme, resulting in abnormal lung development. On the other hand, excessive suppression of inflammation may as well cause pulmonary injury and a certain degree of inflammation is beneficial. So far, effective strategies to prevent and treat BPD are scarce. Therapeutic options targeting single mediators in signaling cascades and mesenchymal stromal cells (MSCs)-based therapies with global regulatory capacities have demonstrated efficacy in preclinical animal models and warrant further validation in patient populations. Ante-, peri- and postnatal exposome analysis and therapeutic investigations using multiple omics will fundamentally dissect the black box of IAI and its effect on the premature lung, contributing to precisely tailored and individualized therapies

    Noninvasive and invasive evaluation of pulmonary arterial pressure in highlanders

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore