32 research outputs found

    Observation of the Peach Fruit Moth, Carposina sasakii, Larvae in Young Apple Fruit by Dedicated Micro-Magnetic Resonance Imaging

    Get PDF
    Infestation of young apple fruits by the larvae of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was studied by a small dedicated micro-magnetic resonance imaging (MRI) apparatus using the three-dimensional (3D) gradient-echo method and the two-dimensional (2D) and 3D spin-echo methods. Changes from a young larva at 1.8 mm in length to a mature one ready to leave the fruit were observed in relation to the progression of infestation of the fruit tissues. The trace of larva intrusion was demonstrated by a series of sliced images in the 3D image data of an infested fruit, where it entered from outside the calyx, and migrated to near the vasculature around the carpel through the core. The small, dedicated MRI device was proven useful for ecological studies of the growth and movement of insect larvae in their food fruits. It can also be applied to detect the infestation of small fruits by insect larvae

    Cadmium-coordinated supramolecule suppresses tumor growth of T-cell leukemia in mice

    Get PDF
    Cadmium is a toxic pollutant with occupational and environmental significance, due to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic metals have potential for use in treatment of cadmium intoxication. In addition, metal-coordinating ability has been postulated to contribute to the cytotoxic effects of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent coordinating ability to metal ions. In this study, we show that cadmium-coordinated thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values ranging from 36 to 129M against epithelia-derived cancer cell lines, while TC4ATS-Cd elicited no significant cytotoxicity (IC50>947M). However, a number of T-cell leukemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of TC4ATS-Cd occurred with an IC50 of 6.9M, which is comparable to that of 6.5M observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through activation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13mg/kg) treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addition, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in liver and kidney compared to equimolar cadmium-treated mice. These results suggest that cadmium-coordinated supramolecules may have therapeutic potential for treatment of T-cell leukemia

    Adipocytes do not significantly contribute to plasma angiotensinogen

    No full text
    Recently, it has been reported that 25% of plasma angiotensinogen (Agt) is derived from fat. Meanwhile, liver-specific Agt knockout (KO) mice have markedly low plasma Agt, which may be due to reduced fat mass. To study the contribution of the fat to plasma Agt, we tested whether increasing fat mass can elevate plasma Agt and blood pressure in liver- Agt KO mice. Epididymal fat mass in liver- Agt KO mice fed a high-fat diet (HFD) was 4.1-fold larger than that in liver- Agt KO mice on a normal-fat diet (NFD). The liver- Agt KO mice on NFD were hypotensive with low levels of plasma Agt (on average, 0.11 vs 2.38 μg/ml). HFD slightly increased plasma Agt (0.17 μg/ml) without increase in blood pressure. To further increase fat mass, liver- Agt KO mice were fed HFD and simultaneously supplemented with low-dose angiotensin II and compared with control mice. Fat mass was comparable between the two groups. However, liver- Agt KO mice had uniformly low plasma Agt (0.09 vs 2.07 μg/ml) and systolic blood pressure (78±12 vs 111±6 mm Hg). In conclusion, adipocyte-derived Agt has essentially no contribution to the plasma concentration and no impact on blood pressure compared to liver-derived Agt
    corecore