75 research outputs found

    Higher hemoglobin levels are an independent risk factor for gestational diabetes

    Get PDF
    Incidence of gestational diabetes (GDM) has increased rapidly. It poses significant risks for both mother and fetus affecting also negatively their longer-term metabolic heath. We asked whether early pregnancy maternal hemoglobin (Hb) levels, indicative for tissue oxygenation, would affect mother's metabolic health and fetal outcome. We assessed in FinnGeDi, a Finnish multicenter case-control study for GDM (n = 1828), association of maternal 1st trimester Hb levels with metabolic parameters and perinatal outcome. Our data show that mothers with GDM had higher Hb levels compared to controls (mean difference 1.746 g/L). Hb levels associated positively with pre-pregnancy body mass index (BMI), fasting glucose levels and glucose levels in a glucose tolerance test and systolic and diastolic blood pressure (bp) levels. When assessed in quartiles the highest Hb quartile had more chronic and gestational hypertension and the most adverse outcome of the metabolic parameters, dose-dependency seen in bp, BMI and glucose levels. In a multivariable regression analysis Hb levels remained an independently associated parameter for GDM after adjusting for key covariates (OR 1.019, 95% CI [1.007; 1.031]). In conclusion, higher maternal Hb levels within the normal variation are an independent risk factor for GDM in this population but have little effect on perinatal outcome.Peer reviewe

    Higher hemoglobin levels are an independent risk factor for gestational diabetes

    Get PDF
    Incidence of gestational diabetes (GDM) has increased rapidly. It poses significant risks for both mother and fetus affecting also negatively their longer-term metabolic heath. We asked whether early pregnancy maternal hemoglobin (Hb) levels, indicative for tissue oxygenation, would affect mother's metabolic health and fetal outcome. We assessed in FinnGeDi, a Finnish multicenter case-control study for GDM (n = 1828), association of maternal 1st trimester Hb levels with metabolic parameters and perinatal outcome. Our data show that mothers with GDM had higher Hb levels compared to controls (mean difference 1.746 g/L). Hb levels associated positively with pre-pregnancy body mass index (BMI), fasting glucose levels and glucose levels in a glucose tolerance test and systolic and diastolic blood pressure (bp) levels. When assessed in quartiles the highest Hb quartile had more chronic and gestational hypertension and the most adverse outcome of the metabolic parameters, dose-dependency seen in bp, BMI and glucose levels. In a multivariable regression analysis Hb levels remained an independently associated parameter for GDM after adjusting for key covariates (OR 1.019, 95% CI [1.007; 1.031]). In conclusion, higher maternal Hb levels within the normal variation are an independent risk factor for GDM in this population but have little effect on perinatal outcome.Peer reviewe

    Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains

    Get PDF
    Prolyl 4-hydroxylases (P4Hs) catalyze post-translational hydroxylation of peptidyl proline residues. In addition to collagen P4Hs and hypoxia-inducible factor P4Hs, a third P4H—the poorly characterized endoplasmic reticulum–localized transmembrane prolyl 4-hydroxylase (P4H-TM)—is found in animals. P4H-TM variants are associated with the familiar neurological HIDEA syndrome, but how these variants might contribute to disease is unknown. Here, we explored this question in a structural and functional analysis of soluble human P4H-TM. The crystal structure revealed an EF domain with two Ca2+-binding motifs inserted within the catalytic domain. A substrate-binding groove was formed between the EF domain and the conserved core of the catalytic domain. The proximity of the EF domain to the active site suggests that Ca2+ binding is relevant to the catalytic activity. Functional analysis demonstrated that Ca2+-binding affinity of P4H-TM is within the range of physiological Ca2+ concentration in the endoplasmic reticulum. P4H-TM was found both as a monomer and a dimer in the solution, but the monomer–dimer equilibrium was not regulated by Ca2+. The catalytic site contained bound Fe2+ and N-oxalylglycine, which is an analogue of the cosubstrate 2-oxoglutarate. Comparison with homologous P4H structures complexed with peptide substrates showed that the substrate-interacting residues and the lid structure that folds over the substrate are conserved in P4H-TM, whereas the extensive loop structures that surround the substrate-binding groove, generating a negative surface potential, are different. Analysis of the structure suggests that the HIDEA variants cause loss of P4H-TM function. In conclusion, P4H-TM shares key structural elements with other P4Hs while having a unique EF domain.publishedVersio

    Maternal hemoglobin associates with preterm delivery and small for gestational age in two Finnish birth cohorts

    Get PDF
    Objective: To test whether maternal hemoglobin during pregnancy associates with offspring perinatal outcomes in a developed country. Changes in maternal hemoglobin concentration during pregnancy are partly physiological phenomena reflecting alterations of maternal blood volume. Especially hemoglobin measures outside the physiological range may influence maternal health and fetal growth with long-lasting consequences. Study design: We studied an unselected sample drawn from two regional birth cohorts born 20 years apart: The Northern Finland Birth Cohorts 1966 and 1986. These are two mother-and-child population-based birth cohorts together comprising 21,710 mothers and their children. After exclusions, the sample size of the current study was 20,554. Concentrations of maternal hemoglobin at first and last antenatal visits were categorized as low (lowest 10%), medium (reference) or high (highest 10%). Multinomial logistic regression analyses for categories of maternal hemoglobin and perinatal outcomes such as preterm delivery and full-term small and large for gestational age were conducted with adjustments for maternal cofactors. Results: Low maternal hemoglobin at early pregnancy associated with decreased risk of full-term small for gestational age (adjusted OR 0.73, 95% CI [0.58, 0.93], p = 0.010). At late pregnancy, low maternal hemoglobin associated with increased risk of preterm delivery (adjusted OR 1.60, 95% CI [1.26, 2.02], p <0.0005) whereas high maternal hemoglobin associated with increased risk of full-term small for gestational age (adjusted OR 1.29, 95% CI [1.07, 1.56], p=0.009). Maternal hemoglobin did not show constant association with risk of large for gestational age. Conclusion: The results from this study support evidence that both low and high maternal hemoglobin associate with adverse perinatal outcomes. Low maternal hemoglobin associated with preterm delivery and high with full-term small for gestational age. Association was mainly present when maternal hemoglobin was measured during the third trimester. These results indicate that it is important to monitor both extremes of maternal hemoglobin throughout the pregnancy. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation

    Get PDF
    Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of > 300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A trans membrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm(-/- )mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflam-matory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm(-/-) mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.Peer reviewe

    HIF-P4H-2 inhibition enhances intestinal fructose metabolism and induces thermogenesis protecting against NAFLD

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2(gt/gt)) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2(gt/gt) mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2(gt/gt) tissues, including the liver, was 15-35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2(gt/gt) small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2(gt/gt) mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. Key messages center dot HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. center dot HIF-P4H-2 inhibition downregulates hepatic lipogenesis. center dot Induced browning of WAT and increased thermogenesis can also mediate protection. center dot HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD.Peer reviewe

    Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation

    Get PDF
    Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of > 300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A trans membrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm(-/- )mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflam-matory microgliosis and neutrophil infiltration was observed in the P4htm-/- cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm(-/-) mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.Peer reviewe

    Exploring effects of remote ischemic preconditioning in a pig model of hypothermic circulatory arrest

    Get PDF
    Objectives. During aortic and cardiac surgery, risks for mortality and morbidity are inevitable. Surgical setups involving deep hypothermic circulatory arrest (DHCA) are effective to achieve organ protection against ischemic injury. The aim of this study was to identify humoural factors mediating additive protective effects of remote ischemic preconditioning (RIPC) in a porcine model of DHCA. Design. Twenty-two pigs were randomized into the RIPC group (n=11) and the control group (n=11). The RIPC group underwent four 5-minute hind limb ischemia-reperfusion cycles prior to cardiopulmonary bypass and DHCA. All animals underwent identical surgical procedures including 60min DHCA at 18 degrees C. Blood samples were collected from vena cava and sagittal sinus at several time points. After the 8-hour follow-up period, the brain, heart, and kidney tissue samples were collected for tissue analyses. Results. Serum levels of brain damage marker S100B recovered faster in the RIPC group, after 4hours of the arrest, (pPeer reviewe

    Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine

    Get PDF
    The HIF transcription factor promotes adaptation to hypoxia and stimulates the growth of certain cancers, including triple-negative breast cancer (TNBC). The HIFα subunit is usually prolyl-hydroxylated by EglN family members under normoxic conditions, causing its rapid degradation. We confirmed that TNBC cells secrete glutamate, which we found is both necessary and sufficient for the paracrine induction of HIF1α in such cells under normoxic conditions. Glutamate inhibits the xCT glutamate-cystine antiporter, leading to intracellular cysteine depletion. EglN1, the main HIFα prolyl-hydroxylase, undergoes oxidative self-inactivation in the absence of cysteine both in biochemical assays and in cells, resulting in HIF1α accumulation. Therefore, EglN1 senses both oxygen and cysteine
    • …
    corecore