80 research outputs found

    Low vs high field 1h NMR spectroscopy for the detection of adulteration of cold pressed rapeseed oil with refined oils

    Get PDF
    Cold pressed rapeseed oil (CPRO) is a relatively recent development in rapeseed processing, which produces a quality product with a high market value. High field NMR (400 MHz) is a well-established tool in food analysis, while low-field NMR (60 MHz) is much less studied. This study aims to establish the effectiveness of both techniques in identifying binary adulteration in CPRO. Three adulteration scenarios were investigated: a) CPRO and refined rapeseed oil (RRO); b) CPRO and refined sunflower oil (RSO); and c) CPRO and RRO or RSO. A range of classification techniques were trialled as well as partial least squares regression to gauge predictive quantification performance. The 400 MHz NMR achieved classification rates of 100% in the scenarios with a single adulterant, and 93% in the multiple adulterant scenario. The 60 MHz NMR produced lower but still encouraging classification rates (RSO 92%; RRO 85%; both RRO and RSO 87%)

    Multianalyte analysis of volatile compounds in virgin olive oils using SPME-GC with FID or MS detection: results of an international interlaboratory validation

    Get PDF
    The organoleptic assessment (Panel test) is the only procedure within the official methods for determining the quality of virgin olive oils that involves an expert panel. There is an urgent need for analytical methodology that can reliably measure volatile compounds in virgin olive oils that is capable of supporting and anticipating the official Panel test. For this reason, a new method based on solid-phase microextraction–gas chromatography with the choice of two possible detectors (FID or MS) was subjected to a large international interlaboratory validation study. The study involved a two-stage process: first, a pretrial phase in which 7 participants were exposed to the method for the first time to identify any initial problems with the methodology; then, a formal validation stage (trial proper), which involved 20 laboratories from Europe, USA, Japan and China. The performance of the different detectors was investigated. While both methods have advantages, the method using FID provided better results for 11 compounds, in terms of reproducibility, compared to MS. This information will allow to implement the method with accurate information of the method performance depending on the detector used. Practical applications: This study provides information from an interlaboratory validation of a method for measuring volatile compounds in virgin olive oils conducted with laboratories (from industry and academia) working in the olive oil sector. The information on the expected analytical errors in the determination of each volatile compound is necessary to apply this method for supporting the official Panel test (sensory analysis). The SPME-GC-MS/FID methods proposed in this work can be used for the internal quality control of a company/distributor/quality control laboratory and could also be used in cases of difficult/contradictory organoleptic assessment, or to confirm results from sensory panels in cases of disputes/disagreement (Reg. EU 2022/2105).European Commission 63569

    Impact of thermal and high-pressure treatments on the microbiological quality and in vitro digestibility of black soldier fly (Hermetia illucens) larvae

    Get PDF
    Black soldier fly larvae (BSFL) are gaining importance in animal feeding due to their ability to upcycle low-value agroindustry by-products into high-protein biomass. The present study evaluated the nutritional composition of BSFL reared on brewer’s by-product (BBP) and the impact of thermal (90◦C for 10/15 min) and high-pressure processing (HPP; 400/600MPa for 1.5/10 min) treatments on the microbial levels and in vitro digestibility in both ruminant and monogastric models. BBP-reared BSFL contained a high level of protein, amino acids, lauric acid, and calcium, and high counts of total viable counts (TVC; 7.97), Enterobacteriaceae (7.65), lactic acid bacteria (LAB; 6.50), and yeasts and moulds (YM; 5.07). Thermal processing was more effective (p 0.05) on any of the in vitro digestibility models, whereas HPP showed increased and decreased ruminal and monogastric digestibility, respectively. HPP did not seem to be a suitable, cost-effective method as an alternative to heat-processing for the large-scale treatment of BSFL

    Multianalyte analysis of volatile compounds in virgin olive oils using SPME-GC with FID or MS detection: results of an international interlaboratory validation

    Get PDF
    13 Páginas.-- 6 tablasThe organoleptic assessment (Panel test) is the only procedure within the official methods for determining the quality of virgin olive oils that involves an expert panel. There is an urgent need for analytical methodology that can reliably measure volatile compounds in virgin olive oils that is capable of supporting and anticipating the official Panel test. For this reason, a new method based on solid-phase microextraction–gas chromatography with the choice of two possible detectors (FID or MS) was subjected to a large international interlaboratory validation study. The study involved a two-stage process: first, a pretrial phase in which 7 participants were exposed to the method for the first time to identify any initial problems with the methodology; then, a formal validation stage (trial proper), which involved 20 laboratories from Europe, USA, Japan and China. The performance of the different detectors was investigated. While both methods have advantages, the method using FID provided better results for 11 compounds, in terms of reproducibility, compared to MS. This information will allow to implement the method with accurate information of the method performance depending on the detector used. Practical applications: This study provides information from an interlaboratory validation of a method for measuring volatile compounds in virgin olive oils conducted with laboratories (from industry and academia) working in the olive oil sector. The information on the expected analytical errors in the determination of each volatile compound is necessary to apply this method for supporting the official Panel test (sensory analysis). The SPME-GC-MS/FID methods proposed in this work can be used for the internal quality control of a company/distributor/quality control laboratory and could also be used in cases of difficult/contradictory organoleptic assessment, or to confirm results from sensory panels in cases of disputes/disagreement (Reg. EU 2022/2105).Horizon 2020 European Research European Commission within the Horizon 2020 Programme (2014–2020). Grant Number: 635690Peer reviewe
    • …
    corecore