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Abstract

The main objective of this work was to develop a novel dimensionality reduc-

tion technique as a part of an integrated pattern recognition solution capable

of identifying adulterants such as hazelnut oil in extra virgin olive oil at low

percentages based on spectroscopic chemical fingerprints. A novel Continuous

Locality Preserving Projections (CLPP) technique is proposed which allows the

modelling of the continuous nature of the produced in-house admixtures as data

series instead of discrete points. The maintenance of the continuous structure

of the data manifold enables the better visualisation of this examined classifi-

cation problem and facilitates the more accurate utilisation of the manifold for

detecting the adulterants. The performance of the proposed technique is val-

idated with two different spectroscopic techniques (Raman and Fourier trans-

form infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest

Neighbors (kNN) algorithm was found to outperform any other state-of-the-art

pattern recognition techniques.

Keywords: Continuous statistical modelling, dimensionality reduction, rapid

detection, Adulteration, Extra virgin olive oil, FT-IR, RAMAN, spectroscopy

∗Corresponding author
Email addresses: kgeorgouli01@qub.ac.uk (Konstantia Georgouli),

j.martinez-del-rincon@qub.ac.uk (Jesus Martinez Del Rincon), t.koidis@qub.ac.uk
(Anastasios Koidis)

Preprint submitted to Journal of LATEX Templates August 10, 2016



2010 MSC: 00-01, 99-00

1. Introduction1

The interdisciplinary collaborations between engineering, computer science2

and analytical science have led to the development of contemporary analytical3

instruments that allow the extraction of great amount of chemical information4

for a large number of samples relatively quickly and effortless. However, the5

produced analytical data (spectroscopic, chromatographic, isotopic, sensorial,6

etc.) are often multivariate data matrices which demand appropriate chemo-7

metric analysis. In chemometrics, mathematical and statistical methods are8

used for processing and capturing the most important and relevant content9

within the multivariate data. Despite the fact that a few multivariate methods10

are used in the area of food analysis either alone or in combination with other11

methods (Berrueta et al., 2007), there is an increasing demand for the intro-12

duction of novel and more intelligent pattern recognition methods for tackling13

more complex food analysis challenges such as food adulteration issues observed14

worldwide (Lohumi et al., 2015).15

One of the most common adulterations occurring is mixing one commod-16

ity product or ingredient with another one in small percentages where the two17

ingredients are of a very similar chemical nature. In these cases, current chemo-18

metric techniques somehow fail to identify the fraudulent sample accurately19

(Ozen & Mauer, 2002; Šmejkalová & Piccolo, 2010) or use the same samples20

for both calibration and validation steps of the model (López-Dı́ez et al., 2003;21

Christy et al., 2004), which biases the results. An indicative example of on-22

going food fraud is the adulteration of extra virgin olive oil, a premium and23

high value commodity with renowned health properties (Zhang et al., 2011).24

Despite the establishment of a strict legislation framework, including specific25

analytical parameters defining the purity of the oil (International Olive Coun-26

cil, a; Agriculture and Rural Development, European Commission), the extra27

virgin olive oil adulteration with other lower value vegetable oils still remains28
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an important issue for the consumers and the olive oil sector alike (European29

Commission, 2013; Frankel, 2010).30

One of these adulterants is hazelnut oil, which has very similar triacylglyc-31

erol, total sterol and fatty acid composition with extra virgin olive oil and has32

concerned numerous researchers (Pena et al., 2005; Parker et al., 2014; Koidis &33

Osorio Argüello, 2013). Extra virgin olive oil can be adulterated with hazelnut34

oil in two different ways: adulteration with crude hazelnut oil and adulteration35

with refined hazelnut oil. The identification of the adulteration with refined36

hazelnut oil is increasingly difficult due to the removal of markers like filber-37

stone, a volatile compound unique to hazelnut oil, and other minor components38

through the refining process in addition to the similarity of the triacylglycerol39

profile of both oils (Flores et al., 2006).40

Most research efforts aiming to address this adulteration problem have made41

use of chromatographic analytical methods. Despite providing satisfactory re-42

sults by analysing the triacylglycerol content (International Olive Council, b),43

polar components (Zabaras & Gordon, 2004) and using sterol fractions, 4,4’-44

Dimethylsterols (Damirchi et al., 2005), n-alkanes (Webster et al., 2001) and45

filberstone (Flores et al., 2006) as possible markers, chromatographic methods46

involve complicated process steps, demand a large amount of time and financial47

resources and require access to laboratory facilities. Therefore, it is urgent to48

develop simple, inexpensive, rapid and accurate alternative methods to deter-49

mine adulterants in extra virgin olive oil in environments that time and fast50

decisions are important (ports, control points, market surveys and other rapid51

testing environments).52

Apart from chromatographic, several spectroscopic techniques in combina-53

tion with chemometric methods have been proposed as rapid screening tech-54

niques for the authentication of extra virgin olive oil and the detection and55

quantification of its adulteration with hazelnut oil. Adulteration of olive oil56

with hazelnut oil at levels of 25% and higher was detected using Fourier trans-57

form infrared (FT-IR) coupled with partial least squares (PLS) analysis (Ozen58

& Mauer, 2002). Moreover, the same combination has been used for devel-59
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oping a method for the estimation of extra virgin olive oil adulteration with60

edible oils including hazelnut oil. The produced PLS models for the case of the61

hazelnut oil showed a relatively good performance (relative error of prediction,62

REP=20.8 and correlation factor R2=0.9351) (Maggio et al., 2010). Multiple63

linear regression (MLR) models constructed using FT-IR data for extra virgin64

olive oil-hazelnut oil admixtures claim to be capable of detecting hazelnut oil65

content in olive oil with a 5% limit of detection (Lerma-Garćıa et al., 2010).66

In another study, high gradient diffusion NMR spectroscopy coupled with dis-67

criminant analysis (DA) was used for detecting rapidly the adulteration of extra68

virgin olive oils with seed and nut oils. The lower limit of detection for the case69

of hazelnut oil was 30% (Šmejkalová & Piccolo, 2010). The development of an70

artificial neural network in 600MHz 1H-NMR and 13C-NMR data achieved a71

limit of 8% (Garćıa-González et al., 2004). In a recent study, 60MHz 1H NMR72

spectral data in combination with PLS regression achieved a limit of detection73

at the level of 11.2% w/w (Parker et al., 2014). However, it has to be highlighted74

that the aforementioned studies tackling this adulteration of extra virgin olive75

oil with little or great success do not claim explicitly if the hazelnut oil is refined76

or crude and they are not often validated adequately and correctly which might77

produce overestimated and /or overfitted results.78

The detection of adulterants at low levels (5-20%) is still quite challenging79

even for high end methods such as chromatography (Zhang et al., 2011; Osorio80

et al., 2014a). There is a need for more research in the field of data analysis81

of complex chemical data, especially spectroscopic data which are by nature82

multivariate. More accurate statistical methods are required to be used on83

top of existing analytical methods that would not necessarily demand a large84

number of samples and are independent of statistical interpretations (Frankel,85

2010).86

The present work introduces a novel continuous statistical modelling tech-87

nique which extends the Locality Preserving Projections (LPP) dimensionality88

reduction technique to the cases where data are considered as a continuous vari-89

able. Data are modelled as data series and the continuity is preserved during90
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the learning and dimensionality reduction by building two graphs incorporating91

neighbourhood information of the data set. In this way, the proposed tech-92

nique has been designed, developed and tested coupled with k-Nearest Neigh-93

bors (kNN) classifier on the adulteration of extra virgin olive oil with hazelnut94

oil using spectra from two different spectroscopic techniques. Preliminary re-95

sults obtained are compared with the performance of state-of-the-art supervised96

pattern recognition techniques.97

2. Theory and algorithm98

2.1. The proposed method: Continuous Locality Preserving Projections (CLPP)99

Continuous Locality Preserving Projections technique is a semi-supervised100

linear method that enables the dimensionality reduction for learning manifolds101

characterised by continuous data. It extends the linear dimensionality reduction102

technique LPP (He & Niyogi, 2003) preserving continuity as in previous non-103

linear techniques such as Temporal Laplacian Eigenmaps (TLE) (Lewandowski104

et al., 2010). LPP was chosen as the base method due to its properties and105

advantages against other dimensionality reduction techniques such as principal106

component analysis (PCA) (Wold et al., 1987) or linear discriminant analysis107

(LDA) (Fisher, 1938), especially when the input data show linear properties108

(He & Niyogi, 2003). Given a set of Y = y1, y2, · · · , yn data points in high109

dimensional space (yk ∈ RD) (see Fig. 1a), CLPP is able to transform this into110

its low dimensional space by mapping it to a set of points Z = m1,m2, · · · ,mn111

(mk ∈ Rd) with d � D (see Fig. 1b), while preserving the continuity of the112

data.113

CLPP algorithm includes the construction of two different neighbourhood114

graphs preserving implicitly the continuous similarity in data points during115

the space transformation. These graphs express continuous dependencies and116

therefore local continuous neighbours in the high dimensional space are located117

nearby in the embedded space without enforcing any artificial embedded geom-118

etry. Two continuous neighbourhoods are produced for each data point mk (see119
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Fig. 2):120

• Continuous neighbourhood (Ck): the 2t nearest points in sequence of cur-

rent data point:

Ck ∈ {mk−t, . . . ,mk, . . . ,mk+t} (1)

• Similarity neighbourhood (Sk): the r points parallel to mk, acquired from

the r repetitions of mk in the r parallel trajectories T(1..r). Each trajectory

is generated by the 2t continuous neighbours:

Sk ∈ {Tk,1, . . . ,mk, . . . , Tk,r} (2)

Specifically, the steps for the dimensionality reduction comprise:121

1. Assign weights to the edges of each graph using the LPP formulation:

Gc(k, j) =

e
−||yk−yj ||2 , k,j ∈ Ck.

0, otherwise.

(3)

Gs(k, j) =

e
−||yk−yj ||2 , k,j ∈ Sk.

0, otherwise.

(4)

2. Compute the eigenvectors V of embedded space : The d eigenvectors V ∗ with

the smallest nonzero eigenvalues make the embedded space. These eigen-

vectors and eigenvalues are calculated by solving the generalized eigenvalue

problem:

arg min
V ∗

(V T · Y T · (LC + β · LS) · Y · V ) (5)

subject to

V T · Y T · (DC + β ·DS) · Y · V = 1 (6)

where LC = DC − GC and LS = DS − GS are the Laplacian matrices and122

DC and DS are diagonal matrices. β is a weighting factor for balancing the123

continuous and similarity variabilities.124
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CLPP applies the same principles than other continuous techniques that aim to125

preserve continuity (Lawrence, 2004; Lewandowski et al., 2010). Nevertheless,126

CLPP shows two main advantages regarding previous techniques: its simplicity127

and both directional mapping (from low to high and from high to low dimen-128

sional spaces) are provided automatically while reducing the space. This second129

advantage is crucial, since it has been proved that calculating those mappings130

from new data in non linear techniques is complex and inaccurate (Martinez-del131

Rincon et al., 2014). The linearity of the spectroscopic data as demonstrated132

by projecting them in a PCA space (Osorio et al., 2014b) proves the suitability133

of the CLPP to our application problem.134

2.2. CLPP applied to oil adulteration135

In order to apply CLPP framework to the extra virgin olive adulteration with136

hazelnut oil, it is important to understand how the raw data will be considered137

by the dimensionality reduction technique. Each adulterated olive oil sample138

will be considered as a data series Tr, where each data point mk is the low139

dimensional representation of its corresponding spectra profile yk at different140

percentage of adulteration from 0% to 100%, k=[0, 100]. Mk+t and mk−t,141

composing the subset Ck, will be then the same oils admixture but at the142

immediate higher and lower levels of adulteration correspondingly. Sk will be143

the set of different adulterated oils samples (different olive oil samples or the144

same olive oil sample but adulterated with a different hazelnut oil) adulteration145

at the exact same level of adulteration k (see Fig. 2).146

Following these indications, our new CLPP technique has potential to be147

applied to any food authenticity problem involving admixtures and/or adul-148

teration. In this paper, the adulteration of vegetable oils is used as the test149

case.150

2.3. Projection of new testing samples into CLPP space151

Due to its linearity, CLPP provides a simple mapping function for project-152

ing new testing samples between high and low dimensional space. Equation 7153
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provides the mapping mechanism for a new testing sample Ytest /∈ Y , whose154

classification we want to estimate:155

Ztest = V ∗T ∗ (Ytest − Y ) (7)

where Y is the mean value of the Y , learned during the creation of the latent156

space.157

3. Experimental results158

3.1. Samples159

Four extra virgin olive oil samples consisting of three Italian (var. Toscano,160

Olivastra Seggianese and Tonda Iblea) and one Greek (var. Koroneiki), two161

Turkish refined hazelnut oils and two crude hazelnut oils (Turkey and Italy)162

were collected directly from the producers. The olive oil samples were spiked163

accurately at percentages that vary from 1% to 90%.164

A few adulteration levels are necessary for generating the desired continuity165

in the produced latent space, as it can be noticed in Fig. 3, which illustrates166

the space resulted by LDA and CLPP by using different number of adulteration167

levels for FT-IR data. Specifically, sixteen different concentration grades were168

selected, from 1% to 15% with an interval of 2, and from 20% to 90% with an169

interval of 10 (see Table 1). The higher resolution in the low concentrations of170

hazelnut oil was selected in order to cover the most challenging adulteration area171

(5-20%) to detect (Zhang et al., 2011). A total of 256 admixture samples were172

prepared for Raman and FT-IR spectroscopic analysis (n=264 samples including173

the pure extra virgin olive oils, refined hazelnut oils and crude hazelnut oils),174

belonging to 16 possible combinations between the 4 base extra virgin olive oils175

and the 4 hazelnut oil adulterants.176

3.2. FT-IR/Raman spectral acquisition177

For FT-IR spectroscopic analysis, the acquisition of all FT-IR spectra was178

performed using a Nicolet iS5 Thermo spectrometer (Thermo Fisher Scientific,179
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Dublin, Ireland) equipped with a DTGS KBr detector and a KBr beam splitter.180

Spectra were acquired from 4000 to 550 cm−1 co-addding 32 interferograms181

at 4 cm−1 resolution with a diamond attenuated total reflectance (iD5 ATR)182

accessory. Absorbance values were recorded at each spectrum point. Three183

replicates resulting in 7157 variables were measured for each sample and the184

average spectrum of these was used.185

A benchtop Advantage 1064 Raman Spectrometer (DeltaNu Inc., Laramie,186

Wyoming, USA) with a scanning range from 200 to 2000 cm−1 and an excitation187

light of 1064 nm was used to collect the Raman spectra of the oil samples. The188

integration time for each Raman spectrum was 10 s. The final sample spectra189

was the average of two replicates with initial 1867 data points.190

3.3. Data pre-treatment191

The resulting FT-IR and Raman spectral profiles underwent some typical192

preprocessing techniques in order to reduce or remove any random or systematic193

variation in the data (Devos et al., 2014). This phase involves three steps.194

Specifically, Standard Normal Variate (SNV) (Barnes et al., 1989) and S-Golay195

filter (Savitzky & Golay, 1964) [polynomial order=2,frame size=9] were applied196

for removing the scatter and smoothing the data points respectively. At the197

end of this preprocessing procedure, the irrelevant spectra area was cut out.198

Regarding FT-IR, data fall between 690.39 and 1875.434 cm−1 and between199

2750.476 and 3100.01 cm−1 which result in a spectrum of 3184 variables. In200

Raman dataset, 1038 variables between 800.314 and 1800.22 cm−1 were selected.201

All chemometric data preprocessing was performed by means of in-house202

Matlab routines (The MathWorks Inc., USA).203

3.4. Experimental setup204

The performance of the proposed dimensionality reduction technique as205

part of a classification technique is evaluated by comparing it with the most206

used supervised pattern recognition techniques in the literature of food science207

(Berrueta et al., 2007), i.e. soft independent modelling of class analogy (SIMCA)208
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as the modelling method, partial least squares discriminant analysis (PLS-DA),209

kNN and nearest neighbour using Pearson’s correlation for distance metric as210

discriminant methods, partial least squares (PLSR) (Wold et al., 1984) as the211

regression technique and unsupervised hierarchical clustering (UHC) (Di Giro-212

lamo et al., 2015) as an unsupervised learning technique. It is also compared213

against other pattern recognition techniques that we consider they have poten-214

tial to tackle the adulteration problem. These were PCA + kNN, LDA + kNN215

and LDA + support vector machines (SVM) (Belousov et al., 2002) as discrim-216

inant methods. It has to be mentioned that the methodologies involving LDA217

also required PCA to be applied before LDA to reduce the dimensionality for218

solving LDA’s limitation on a low sample-to-variable ratio (number of samples219

� number of variables) (Szymańska et al., 2015). Parameter tuning was opti-220

mised empirically for every technique within the comparison in order to provide221

the highest classification rate in each of them. Details about the parameters222

values used in our measurements for gathering results are shown in the supple-223

mentary material. For CLPP, t=3 and r=5 were used in all experiments. It has224

to be noted that CLPP is a novel method that was conceived and developed by225

this research team and directly implemented in Matlab.226

The main proposal of this work is the application of kNN on the CLPP space.227

CLPP has been also combined and tested with SVM, geodesic distance, clus-228

tering and Mahalanobis distance as classifiers for finding the best combination229

(data not shown). Furthermore, PLSR is applied in combination with the CLPP230

latent space for exploring the potential improvement regarding the conventional231

PLSR. The rationale of this experiment is that applying regression on a low di-232

mensional space is simpler and computationally less expensive than on the raw233

data while preserving the advantages of regression outputs. For comparison234

purposes, the application of PLSR on PCA space was also examined.235

As previously mentioned, two spectral datasets (Raman and FT-IR spec-236

tra) of 256 samples each were investigated for this work. It is accepted that to237

evaluate the classification ability of all the aforementioned multivariate tech-238

niques, the testing dataset must not be used in the building of the model239
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(Biancolillo et al., 2014). Therefore, experiments were conducted using leave-240

one-adulterated-oil-out cross validation in which two oils, one of the four extra241

virgin olive oils and one of the four hazelnut oils (crude or refined) and all their242

admixtures are taken for testing leaving the rest of them for the training of the243

model in each iteration. In total, sixteen iterations were performed for each244

experiment. Admixtures of the two testing oils with the remaining training oils245

are not used at all in the experiment iteration for producing unbiased, gener-246

alised and realistic results. This leads to training and testing sets consist of 168247

samples and 18 samples respectively in each iteration.248

The mean accuracy and the standard deviation over these iterations are the249

main evaluation metrics of this comparative analysis. Root mean square error250

(RMSE) of prediction was measured for the cases in continuous space (PLSR,251

PCA + PLSR and CLPP + PLSR) given the continuous nature of their output252

as an adulteration percentage in real numbers. For computing the classification253

rate for the PLSR experiments, if the PLSR output value of a testing sample is254

within the range of adulteration associated to a given class then this sample is255

classified to this specific class.256

Two different classification scenarios on the adulteration of olive oil with257

hazelnut oil are considered with respect to the number of classes for establish-258

ing a clear idea of the behaviour of the compared techniques. Here the concept of259

the class is related to the expected level of resolution to be detected in the adul-260

teration. The eighteen concentration grades (the 16 adulteration levels shown in261

Table 1 plus pure olive and pure hazelnut oil) of the in-house admixtures were262

grouped in 10 classes ( 1st class ∈ [0,1), 2nd class ∈ [1,5), 3rd class ∈ [5,9), 4th263

class ∈ [9,13), 5th class ∈ [13,20), 6th class ∈ [20,40), 7th class ∈ [40,60), 8th264

class ∈ [60,80), 9th class ∈ [80,90), 10th class ∈ [90,100] ), where the numbers265

in the intervals represent the concentration of hazelnut oil within the mixture,266

in percentage. These classes were used for the calibration and validation of the267

model in a first scenario. Thereafter, the characterisation of a spectrum of an268

oil sample as pure extra virgin olive oil (∈ [0,1)), low adulterated extra virgin269

olive oil (∈ [1,12)), high adulterated extra virgin olive oil (∈ [12,90)) and mostly270
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pure hazelnut oil (∈ [90,100]) (4 classes) is addressed to the second scenario.271

This second scenario aims to evaluate the performance of our methodology in272

an adulteration screening system, where a simple decision is intended.273

3.5. Discussion of the results274

3.5.1. Qualitative analysis275

An exploratory representation for FT-IR data is presented in Fig. 4 us-276

ing PCA, LDA and CLPP with two latent dimensions. All three dimension-277

ality reduction techniques were performed using the same values for the pa-278

rameters for both scenarios (PCA: PCA dims=2; LDA: LDA dims=2; CLPP:279

CLPP dims=2, β=0.50). The pattern of the mapped data of PCA and CLPP280

spaces remains similar in both scenarios. It appears that PCA, as an unsuper-281

vised dimensionality reduction technique, does not allow a clear separation of282

the admixtures for FT-IR data for all cases. Unlike PCA, admixtures are more283

discriminant in LDA space due to the pronounced supervised class membership.284

On the other hand, CLPP provides a better visualisation and dispersion of the285

continuous data. Specifically, it can be noticed that pure olive oils and hazelnut286

oils are plotted on the extremes of the produced CLPP arc respectively, whereas287

the different admixtures are lied across the arc that prove the data continuity.288

Similar conclusions can be drawn for Raman data (Figures not shown).289

3.5.2. Quantitative analysis290

The cross validation schema was applied as described in section 3.4 for two291

examined scenarios.292

Classification problem with 10 classes. Table 2 presents the mean classification293

rate and the standard deviation of each pattern recognition technique. Only294

LDA and CLPP perform above the state-of-the-art techniques, i.e. SIMCA and295

PLS-DA in both Raman and FT-IR data. In spite of the difficulty and the296

complexity of this scenario, CLPP+kNN shows the best performance in both297

datasets regarding classification rate and standard deviation, obtaining around298

40% of recognition rate of the adulteration level. In addition, the application299
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of CLPP on a PLSR framework performs better than the simple PLSR, which300

proves further the suitability of the CLPP reduced space to the adulteration301

problem. PLSR execution also exhibits a parallel reduction in the error of302

prediction (RMSE reducing from 0.19 to 0.18 for Raman spectral data and303

from 0.22 to 0.20 for FT-IR). PLSR on PCA space improves the classification304

ability of PLSR only using RAMAN spectra by retaining the same RMSE.305

Classification problem with 4 classes. The decrease in the number of classes in-306

fluences the classification considerably as it can be seen in Table 2. Using four307

different groups of classes, roughly 79% and 75% correct classification can be308

achieved with CLPP+kNN (see Table 2) in RAMAN and FT-IR respectively, be-309

ing the best performing algorithm and with the smaller standard deviation (cross310

validation). Regardless of the number of classes in the problem, CLPP+PLSR311

enhances the performance of the simple PLSR in satisfied levels with simulta-312

neous decrease in RMSE, from 0.23 to 0.18 for Raman and from 0.24 to 0.19313

for FT-IR data. PCA+PLSR also improves the general PLSR performance and314

the RMSE (to 0.19 for Raman and to 0.20 for FT-IR), although in a smaller315

amount. Furthermore, an extra column has been included for indicating the316

classification ability of each technique in low percentages (1-12%) since this317

area is the most challenging for most analytical methods and particularly for318

rapid screening applications such as the current one. For the case of 10 classes,319

this area (1-12%) is not applicable since the number of classes provide already320

a more detailed partitioning. SIMCA exhibits a very low classification rate of321

12.50% for Raman data because according to the literature it is very sensitive to322

handle unbalanced training datasets and classifies most testing samples to the323

class with the more representatives (12-90% hazelnut oil adulteration) (Alonso-324

Salces et al., 2010). CLPP+kNN exhibits again the highest performance in this325

measure for both datasets.326

Referring to both scenarios, the option to model the adulteration of extra327

virgin olive oil with both crude hazelnut oil and refined hazelnut oil at the same328

time and the relatively small number of pure samples make the problem more329
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complicated and challenging but also demonstrate clearly the great potential330

of CLPP technique. Beyond the performance of CLPP+kNN, the classification331

ability of the application of PLSR on CLPP space is better compared with the332

simple PLSR and the qualitative analysis of the space is more continuous and333

coherent with the true nature of the data. In the first scenario, LDA+kNN and334

PCA+kNN produce comparable results with CLPP+kNN in some particular335

case. Although the difference between their performance is not statistical sig-336

nificant, since their error bars (see supplementary material) overlap i.e. P value337

> 0.05 (Cumming et al., 2007), CLPP+kNN is consistently more accurate and338

with smaller standard deviation in the most of the cases investigated. This can339

be justified from the systematic design of the training sample set that we de-340

signed and that allows the resulting latent space produced by LDA and PCA341

to become convergent to CLPP when the number of classes is large (see Fig.342

4). Notably, the most widely applied and leading multivariate techniques like343

SIMCA, PLS-DA and PLSR, exhibit the weakest results in the condition of the344

first scenario where a ten classes classification problem is examined.345

4. Conclusions346

In this paper, a dimensionality reduction technique was developed to model347

the continuous nature of the admixtures as data series for addressing the adulter-348

ation of extra virgin olive oil with hazelnut oil. The food adulteration problem349

was modelled in two separate ways with a different number of classes. The350

results proved that CLPP coupled with kNN provides the best classification351

performance compared to state-of-the-art techniques (SIMCA, PLS-DA). This352

study confirms that the proposed solution could be very useful and effective for353

screening purposes. About 80% and 75% overall mean classification rate was354

obtained for the classification problem with four classes with more than 82%355

and 69% in low percentages (1%-12%) for Raman and FT-IR data respectively.356

Moreover, some interest remarks for the scientific chemometric community can357

be derived from this work. First, the adulteration problem is continuous by358

14



nature and should be considered as such in the next generation chemometric359

analytic tools, as revealed by the low performance of current pattern recogni-360

tion techniques and the improvement in performance when combining CLPP361

with PLSR in all investigated cases. Second, a detailed data with high number362

of samples and/or publicly available datasets for model training is crucial for363

developing new algorithms for tackling adulteration problems as evidenced by364

the good performance provided by LDA when samples were carefully prepared.365

Bearing in mind that this type of olive oil adulteration is a sophisticated and366

difficult analytical problem, this preliminary study demonstrates clearly that367

CLPP-based framework is able to preserve the continuous nature of the data368

that can be used for screening purposes on low adulteration olive oil mixtures.369

Future work will look at the application of CLPP to other challenging food370

adulteration problems such as the authenticity of dairy powder and of herbs371

and spices, using FT-IR, Raman spectroscopic data, given CLPP’s theoreti-372

cal potential to be applied to any admixture problem, and higher number of373

samples.374
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Alonso-Salces, R., Héberger, K., Holland, M., Moreno-Rojas, J., Mariani, C.,

Bellan, G., Reniero, F., & Guillou, C. (2010). Multivariate analysis of nmr

fingerprint of the unsaponifiable fraction of virgin olive oils for authentication

purposes. Food Chemistry , 118 , 956–965.

15

http://ec.europa.eu/agriculture/olive-oil/legislation/index_en.htm
http://ec.europa.eu/agriculture/olive-oil/legislation/index_en.htm


Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal vari-

ate transformation and de-trending of near-infrared diffuse reflectance spec-

tra. Appl. Spectrosc., 43 , 772–777. URL: http://as.osa.org/abstract.

cfm?URI=as-43-5-772.

Belousov, A., Verzakov, S., & Von Frese, J. (2002). A flexible classification

approach with optimal generalisation performance: support vector machines.

Chemometrics and Intelligent Laboratory Systems, 64 , 15–25.

Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised
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Figure 1: Definition and application of CLPP: (a) Data points in high dimensional space; (b)

Data points in low dimensional space.
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Figure 3: LDA space produced by FT-IR for: (a) three adulteration grades; (c) six adulteration

grades. CLPP space for FT-IR data: (b) three adulteration grades; (d) six adulteration grades

(see legend). EVOO, extra virgin olive oil; HO, hazelnut oil.
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Figure 4: Exploratory analysis of FT-IR data for 10 classes: (a) PCA score plot; (b) LDA

space; (c) CLPP space. For 4 classes: (d) PCA score plot; (e) LDA space; (f) CLPP space.

EVOO, extra virgin olive oil; HO, hazelnut oil.
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Table 1: Details of extra virgin olive and hazelnut oils for Raman and FT-IR analysis.

Admixtures

Identity of the

reference olive oil

Identity of the adulterant

hazelnut oil

Concentration (%v/v)

of hazelnut oil

1.00

EVOO1 RHO1 3.00

5.00

7.00

9.00

EVOO2 RHO2 11.00

13.00

15.00

20.00

EVOO3 CHO1 30.00

40.00

50.00

60.00

EVOO4 CHO2 70.00

80.00

90.00

’EVOO’ indicates extra virgin olive oil; ’RHO’ is refined hazelnut oil and ’CHO’ is crude hazelnut

oil.
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Table 2: Mean classification rate (%) and standard deviations of the testing samples within each dataset for 10

different classes and for 4 percentage areas for the detection of olive oil adulteration using RAMAN and FT-IR.

CLASSIFICATION RAMAN FT-IR

TECHNIQUE Overall (%) For 1-12% Overall(%) For 1-12%

For 10 different classes

SIMCA 25.35±17.09 n/a 30.90±18.59 n/a

PLS-DA 26.39±8.24 n/a 25.69±10.12 n/a

PLSR 33.68±26.56 n/a 27.43±12.74 n/a

kNN 25.00±14.77 n/a 34.38±15.21 n/a

Pearson’s correlation 26.04±15.01 n/a 30.90±15.45 n/a

UHC 23.96±11.06 n/a 21.18±10.78 n/a

PCA+kNN 25.00±14.77 n/a 35.07±16.45 n/a

LDA+kNN 40.63±25.15 n/a 32.29±19.05 n/a

LDA+SVM 33.33±19.25 n/a 26.61±13.98 n/a

PCA+PLSR 35.42±28.10 n/a 25.35±19.56 n/a

CLPP+PLSR 38.54±25.29 n/a 29.17±22.73 n/a

CLPP+kNN 40.97±17.90 n/a 36.11±17.21 n/a

For 4 different classes

SIMCA 56.25±6.99 12.50 64.58±11.45 53.13

PLS-DA 66.32±14.41 65.63 64.93±12.94 58.33

PLSR 59.72±20.24 28.13 56.94±12.91 27.08

kNN 53.47±17.90 42.71 67.01±19.40 54.17

Pearson’s correlation 54.17±18.31 43.75 68.75±15.57 58.33

UHC 58.68±11.47 57.79 56.60±13.02 56.25

PCA+kNN 53.82±16.94 41.67 68.06±16.67 58.33

LDA+kNN 74.31±13.59 72.92 69.44±15.45 61.46

LDA+SVM 63.19±14.47 57.29 60.07±28.13 64.58

PCA+PLSR 59.72±19.93 33.33 59.03±17.44 30.21

CLPP+PLSR 64.93±19.11 39.58 59.03±15.83 32.29

CLPP+kNN 79.17±10.04 82.29 74.65±12.00 69.79

SIMCA: Soft independent modelling of class analogy; PLS-DA: Partial least squares discriminant analysis;

PLSR: Partial least squares regression; kNN: k-Nearest Neighbors; UHC: Unsupervised hierarchical clustering;

PCA: Principal component analysis; LDA: Linear discriminant analysis; SVM: Support vector machines; CLPP:

Continuous locality preserving projections; n/a: not applicable.
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