111 research outputs found

    Long-term efficacy and safety of Hizentra® in patients with primary immunodeficiency in Japan, Europe, and the United States: a Review of 7 Phase 3 Trials

    Get PDF
    Many patients with primary immunodeficiency (PID) require immunoglobulin G (IgG) replacement therapy, delivered as intravenous IgG (IVIG) or subcutaneous IgG (SCIG). We aim to identify trends in efficacy and safety that would not be evident in individual studies of small patient numbers. Seven open-label, Phase 3, prospective, multicenter studies of the efficacy and safety of Hizentra® (a SCIG), conducted in Japan, Europe, and the US were summarized. Overall, 125 unique patients received 15,013 weekly infusions during a total observation period of 250.9 patient-years. Mean weekly doses of Hizentra® were 83.22–221.3 mg/kg body weight; infusion rates per patient (total body rate) were 25.2–49.3 mL/h across studies. The rates of infections and serious bacterial infections were 3.10 and 0.03 events per patient/year, respectively. Annualized rates of days hospitalized due to infection, out of work/school, and prophylactic antibiotic use were 0.95, 5.14, and 36.78 per patient, respectively. For the equivalent monthly dose, weekly Hizentra® SCIG administration resulted in expectedly-increased serum IgG trough levels in patients switching from IVIG, and maintained levels in patients switching from previous SCIG. Adverse events (AEs) totaled 5039 (events/infusion 0.094–0.773), almost all of which were mild/moderate. Three thousand one hundred ninety-seven were considered treatment-related, the most common of which were injection site reactions (2919 events; 0.001–0.592 AEs per infusion). Systemic AEs were very uncommon. The results from these seven studies indicate that Hizentra® therapy was both efficacious and well tolerated during long-term treatment. This is particularly important in patients with PID, who may require lifelong IgG replacement therapy

    A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair

    Get PDF
    Immunoglobulin class switch recombination (CSR) deficiencies are rare primary immunodeficiencies, characterized by a lack of switched isotype (IgG, IgA, or IgE) production, variably associated with abnormal somatic hypermutation (SHM). Deficiencies in CD40 ligand, CD40, activation-induced cytidine deaminase, and uracil-N-glycosylase may account for this syndrome. We previously described another Ig CSR deficiency condition, characterized by a defect in CSR downstream of the generation of double-stranded DNA breaks in switch (S) μ regions. Further analysis performed with the cells of five affected patients showed that the Ig CSR deficiency was associated with an abnormal formation of the S junctions characterized by microhomology and with increased cell radiosensitivity. In addition, SHM was skewed toward transitions at G/C residues. Overall, these findings suggest that a unique Ig CSR deficiency phenotype could be related to an as-yet-uncharacterized defect in a DNA repair pathway involved in both CSR and SHM events

    The Loss of PGAM5 Suppresses the Mitochondrial Degeneration Caused by Inactivation of PINK1 in Drosophila

    Get PDF
    PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1

    Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors

    Get PDF
    AK2 is an adenylate phosphotransferase that localizes at the intermembrane spaces of the mitochondria, and its mutations cause a severe combined immunodeficiency with neutrophil maturation arrest named reticular dysgenesis (RD). Although the dysfunction of hematopoietic stem cells (HSCs) has been implicated, earlier developmental events that affect the fate of HSCs and/or hematopoietic progenitors have not been reported. Here, we used RD-patient-derived induced pluripotent stem cells (iPSCs) as a model of AK2-deficient human cells. Hematopoietic differentiation from RD-iPSCs was profoundly impaired. RD-iPSC-derived hemoangiogenic progenitor cells (HAPCs) showed decreased ATP distribution in the nucleus and altered global transcriptional profiles. Thus, AK2 has a stage-specific role in maintaining the ATP supply to the nucleus during hematopoietic differentiation, which affects the transcriptional profiles necessary for controlling the fate of multipotential HAPCs. Our data suggest that maintaining the appropriate energy level of each organelle by the intracellular redistribution of ATP is important for controlling the fate of progenitor cells

    Enhanced AKT Phosphorylation of Circulating B Cells in Patients With Activated PI3Kδ Syndrome

    Get PDF
    Activated PI3Kδ syndrome (APDS) is a primary immunodeficiency characterized by recurrent respiratory tract infections, lymphoproliferation, and defective IgG production. Heterozygous mutations in PIK3CD, PIK3R1, or PTEN, which are related to the hyperactive phosphoinositide 3-kinase (PI3K) signaling, were recently presented to cause APDS1 or APDS2 (APDSs), or APDS-like (APDS-L) disorder. In this study, we examined the AKT phosphorylation of peripheral blood lymphocytes and monocytes in patients with APDSs and APDS-L by using flow cytometry. CD19+ B cells of peripheral blood in APDS2 patients showed the enhanced phosphorylation of AKT at Ser473 (pAKT) without any specific stimulation. The enhanced pAKT in CD19+ B cells was normalized by the addition of a p110δ inhibitor. In contrast, CD3+ T cells and CD14+ monocytes did not show the enhanced pAKT in the absence of stimulation. These findings were similarly observed in patients with APDS1 and APDS-L. Among CD19+ B cells, enhanced pAKT was prominently detected in CD10+ immature B cells compared with CD10− mature B cells. Enhanced pAKT was not observed in B cells of healthy controls, patients with common variable immunodeficiency, and hyper IgM syndrome due to CD40L deficiency. These results suggest that the enhanced pAKT in circulating B cells may be useful for the discrimination of APDS1, APDS2, and APDS-L from other antibody deficiencies.The Supplementary Material for this article can be found online at https://www.frontiersin.org/articles/10.3389/fimmu.2018.00568/full#supplementary-material.This study was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (16H05355 and 16K15528 to SO, 17H04233 to SN), the Ministry of Health, Labour and Welfare, Japan (17933299 to SN), and Practical Research Project for Rare/Intractable Diseases from Japan Agency for Medical Research and Development, AMED

    Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital nephrogenic diabetes insipidus (NDI) is characterised by an inability to concentrate urine despite normal or elevated plasma levels of the antidiuretic hormone arginine vasopressin. We report a Japanese extended family with NDI caused by an 11.2-kb deletion that includes the entire <it>AVPR2 </it>locus and approximately half of the <it>Rho GTPase-activating protein 4 </it>(<it>ARHGAP4</it>) locus. ARHGAP4 belongs to the RhoGAP family, Rho GTPases are critical regulators of many cellular activities, such as motility and proliferation which enhances intrinsic GTPase activity.</p> <p>ARHGAP4 is expressed at high levels in hematopoietic cells, and it has been reported that an NDI patient lacking <it>AVPR2 </it>and all of <it>ARHGAP4 </it>showed immunodeficiency characterised by a marked reduction in the number of circulating CD3+ cells and almost complete absence of CD8+ cells.</p> <p>Methods</p> <p>PCR and sequencing were performed to identify the deleted region in the Japanese NDI patients. Immunological profiles of the NDI patients were analysed by flow cytometry. We also investigated the gene expression profiles of peripheral blood mononuclear cells (PBMC) from NDI patients and healthy controls in microarray technique.</p> <p>Results</p> <p>We evaluated subjects (one child and two adults) with 11.2-kb deletion that includes the entire <it>AVPR2 </it>locus and approximately half of the <it>ARHGAP4</it>. Hematologic tests showed a reduction of CD4+ cells in one adult patient, a reduction in CD8+ cells in the paediatric patient, and a slight reduction in the serum IgG levels in the adult patients, but none of them showed susceptibility to infection. Gene expression profiling of PBMC lacking <it>ARHGAP4 </it>revealed that expression of RhoGAP family genes was not influenced greatly by the lack of <it>ARHGAP4</it>.</p> <p>Conclusion</p> <p>These results suggest that loss of <it>ARHGAP4 </it>expression is not compensated for by other family members. ARHGAP4 may play some role in lymphocyte differentiation but partial loss of <it>ARHGAP4 </it>does not result in clinical immunodeficiency.</p

    Epstein-Barr Virus-Associated γδ T-Cell Lymphoproliferative Disorder Associated With Hypomorphic IL2RG Mutation

    Get PDF
    Chronic active Epstein-Barr virus (EBV) infection (CAEBV) is an EBV-associated lymphoproliferative disease characterized by repeated or sustainable infectious mononucleosis (IM)-like symptoms. EBV is usually detected in B cells in patients who have IM or Burkitt's lymphoma and even in patients with X-linked lymphoproliferative syndrome, which is confirmed to have vulnerability to EBV infection. In contrast, EBV infects T cells (CD4+ T, CD8+ T, and γδT) or NK cells mono- or oligoclonally in CAEBV patients. It is known that the CAEBV phenotypes differ depending on which cells are infected with EBV. CAEBV is postulated to be associated with a genetic immunological abnormality, although its cause remains undefined. Here we describe a case of EBV-related γδT-cell proliferation with underlying hypomorphic IL2RG mutation. The immunological phenotype consisted of γδT-cell proliferation in the peripheral blood. A presence of EBV-infected B cells and γδT cells mimicked γδT-cell-type CAEBV. Although the patient had normal expression of CD132 (common γ chain), the phosphorylation of STAT was partially defective, indicating impaired activation of the downstream signal of the JAK/STAT pathway. Although the patient was not diagnosed as having CAEBV, this observation shows that CAEBV might be associated with immunological abnormality

    Prevention of Apoptosis by Mitochondrial Phosphatase PGAM5 in the Mushroom Body Is Crucial for Heat Shock Resistance in Drosophila melanogaster

    Get PDF
    The heat shock (HS) response is essential for survival of all organisms. Although the machinery of the HS response has been extensively investigated at the cellular level, it is poorly understood at the level of the organism. Here, we show the crucial role of the mushroom body (MB) in the HS response in Drosophila. Null mutants of the mitochondrial phosphatase Drosophila PGAM5 (dPGAM5) exhibited increased vulnerability to HS, which was reversed by MB-specific expression of the caspase inhibitor p35, and similar vulnerability was induced in wild-type flies by knockdown of MB dPGAM5. Elimination of the MB did not affect the HS response of wild-type flies, but did increase the resistance of dPGAM5-deficient flies to HS. Thus, the MB may possess an apoptosis-dependent toxic function, the suppression of which by dPGAM5 appears to be crucial for HS resistance

    Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study.

    Get PDF
    BACKGROUND: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE: We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS: We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS: Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION: APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.T.C. is supported by National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland. A.C. has a Wellcome Trust Postdoctoral Training Fellowship for Clinicians (103413/Z/13/Z). K.O. is supported by funding from BBSRC, MRC, Wellcome Trust and GSK. R.D. and D.S.K are funded by National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK. C.S. and S.E. are supported by the German Federal Ministry of Education and Research (BMBF 01 EO 0803 grant to the Center of Chronic immunodeficiency and BMBF 01GM1111B grant to the PID-NET initiative). S.N.F is supported in part by the Southampton UK National Institute for Health Research (NIHR) Wellcome Trust Clinical Research Facility and NIHR Respiratory Biomedical Research Unit. M.A.A.I. is funded by NHS Innovation London and King’s College Hospital Charitable Trust. A.F., S.L., A.D., F.R-L and S.K. are supported by the European Union’s 7th RTD Framework Programme (ERC advanced grant PID-IMMUNE contract 249816) and a government grant managed by the French Agence Nationale de la Recherche as part of the "Investments for the Future" program (ANR-10-IAHU-01). S.L. is supported by the Agence Nationale de la Recherche (ANR) (ANR-14-CE14-0028-01), the Foundation ARC pour la Recherche sur le Cancer (France), the Rare Diseases Foundation (France) and François Aupetit Association (France). S.L. is a senior scientist and S.K is a researcher at the Centre National de la Recherche Scientifique-CNRS (France). A.D. and S.K. are supported by the “Institut National de la Santé et de la Recherche Médicale". S.K. also supported by the Fondation pour la Recherche Médicale (grant number: ING20130526624), la Ligue Contre le Cancer (Comité de Paris) and the Centre de Référence Déficits Immunitaires Héréditaires (CEREDIH). S.O.B is supported by the Higher Education Funding Council for England. B.V. is supported by the UK Biotechnology and Biological Sciences Research Council [BB/I007806/1], Cancer Research UK [C23338/A15965) and the National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. B.V. is consultant to Karus Therapeutics (Oxford, UK). S.N. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (095198/Z/10/Z). S.N. is also supported by the European Research Council Starting grant 260477, the EU FP7 collaborative grant 261441 (PEVNET project) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, UK. A.M.C. is funded by the Medical Research Council, British Lung Foundation, University of Sheffield and Cambridge NIHR-BRC. Research in A.M.C. laboratory has received non-commercial grant support from GSK, Novartis, and MedImmune.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jaci.2016.06.02
    • …
    corecore