8,724 research outputs found

    Precision laser range finder system design for Advanced Technology Laboratory applications

    Get PDF
    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible

    Degenerate ground states and nonunique potentials: breakdown and restoration of density functionals

    Get PDF
    The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total and exchange-correlation energy functionals to the extent needed in applications of DFT to atomic, molecular and solid-state physics and quantum chemistry. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems

    Electron Localization in the Insulating State

    Full text link
    The insulating state of matter is characterized by the excitation spectrum, but also by qualitative features of the electronic ground state. The insulating ground wavefunction in fact: (i) sustains macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept, and we show how the two basic features stem from essentially the same formalism. Our approach to localization is exemplified by means of a two--band Hubbard model in one dimension. In the noninteracting limit the wavefunction localization is measured by the spread of the Wannier orbitals.Comment: 5 pages including 3 figures, submitted to PR

    Band mass anisotropy and the intrinsic metric of fractional quantum Hall systems

    Full text link
    It was recently pointed out that topological liquid phases arising in the fractional quantum Hall effect (FQHE) are not required to be rotationally invariant, as most variational wavefunctions proposed to date have been. Instead, they possess a geometric degree of freedom corresponding to a shear deformation that acts like an intrinsic metric. We apply this idea to a system with an anisotropic band mass, as is intrinsically the case in many-valley semiconductors such as AlAs and Si, or in isotropic systems like GaAs in the presence of a tilted magnetic field, which breaks the rotational invariance. We perform exact diagonalization calculations with periodic boundary conditions (torus geometry) for various filling fractions in the lowest, first and second Landau levels. In the lowest Landau level, we demonstrate that FQHE states generally survive the breakdown of rotational invariance by moderate values of the band mass anisotropy. At 1/3 filling, we generate a variational family of Laughlin wavefunctions parametrized by the metric degree of freedom. We show that the intrinsic metric of the Laughlin state adjusts as the band mass anisotropy or the dielectric tensor are varied, while the phase remains robust. In the n=1 Landau level, mass anisotropy drives transitions between incompressible liquids and compressible states with charge density wave ordering. In n>=2 Landau levels, mass anisotropy selects and enhances stripe ordering with compatible wave vectors at partial 1/3 and 1/2 fillings.Comment: 9 pages, 8 figure

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    External field control of donor electron exchange at the Si/SiO2 interface

    Full text link
    We analyze several important issues for the single- and two-qubit operations in Si quantum computer architectures involving P donors close to a SiO2 interface. For a single donor, we investigate the donor-bound electron manipulation (i.e. 1-qubit operation) between the donor and the interface by electric and magnetic fields. We establish conditions to keep a donor-bound state at the interface in the absence of local surface gates, and estimate the maximum planar density of donors allowed to avoid the formation of a 2-dimensional electron gas at the interface. We also calculate the times involved in single electron shuttling between the donor and the interface. For a donor pair, we find that under certain conditions the exchange coupling (i.e. 2-qubit operation) between the respective electron pair at the interface may be of the same order of magnitude as the coupling in GaAs-based two-electron double quantum dots where coherent spin manipulation and control has been recently demonstrated (for example for donors ~10 nm below the interface and \~40 nm apart, J~10^{-4} meV), opening the perspective for similar experiments to be performed in Si.Comment: 11 pages, 15 figures. Changes in Eq. 24 plus minor typo

    Domain structure of bulk ferromagnetic crystals in applied fields near saturation

    Full text link
    We investigate the ground state of a uniaxial ferromagnetic plate with perpendicular easy axis and subject to an applied magnetic field normal to the plate. Our interest is the asymptotic behavior of the energy in macroscopically large samples near the saturation field. We establish the scaling of the critical value of the applied field strength below saturation at which the ground state changes from the uniform to a branched domain magnetization pattern and the leading order scaling behavior of the minimal energy. Furthermore, we derive a reduced sharp-interface energy giving the precise asymptotic behavior of the minimal energy in macroscopically large plates under a physically reasonable assumption of small deviations of the magnetization from the easy axis away from domain walls. On the basis of the reduced energy, and by a formal asymptotic analysis near the transition, we derive the precise asymptotic values of the critical field strength at which non-trivial minimizers (either local or global) emerge. The non-trivial minimal energy scaling is achieved by magnetization patterns consisting of long slender needle-like domains of magnetization opposing the applied fieldComment: 38 pages, 7 figures, submitted to J. Nonlin. Sci

    Disorder and Interaction in 2D: Exact diagonalization study of the Anderson-Hubbard-Mott model

    Full text link
    We investigate, by numerically calculating the charge stiffness, the effects of random diagonal disorder and electron-electron interaction on the nature of the ground state in the 2D Hubbard model through the finite size exact diagonalization technique. By comparing with the corresponding 1D Hubbard model results and by using heuristic arguments we conclude that it is \QTR{it}{unlikely} that there is a 2D metal-insulator quantum phase transition although the effect of interaction in some range of parameters is to substantially enhance the non-interacting charge stiffness.Comment: 13 pages, 2 figures Revised version. Accepted for publication in Phys. Rev. Let

    Flutuação populacional do ácaro-da-ferrugem-da-videira em vinhedo comercial em Candiota, RS, com diferentes métodos de amostragem.

    Get PDF
    Nos vinhedos da Região da Campanha do Rio Grande do Sul, o ácaro-da-ferrugem-da-videira, Calepitrimerus vitis (Nalepa, 1905) (Acari: Eriophyidae), tem sido encontrado com frequência desde a safra 2004/2005 associado com sintomas de bronzeamento nas folhas. A flutuação populacional de C. vitis na cultivar ?Cabernet Sauvignon? foi estudada em vinhedo comercial localizado em Candiota, RS, durante as safras agrícolas 2007/2008 (de novembro a junho) e 2008/2009 (de outubro a maio). A amostragem foi realizada nas folhas e através de armadilhas constituídas por fitas adesivas de dupla face instaladas nos ramos de produção. O pico populacional, na primeira safra, ocorreu em março de 2008 quando foram registrados 0,34 indivíduos por cm² da face abaxial das folhas medianas e 29,48 indivíduos por armadilhas. Na segunda safra, o pico populacional foi menos intenso e ocorreu em outubro de 2008, quando foram detectados 0,11 indivíduos por cm² da face abaxial das folhas medianas e 0,43 indivíduos por armadilhas. Foi detectado que o início do deslocamento de C. vitis para os locais de hibernação ocorre no verão, a partir de fevereiro. As armadilhas adesivas foram mais eficientes para identificar a presença de C. vitis no vinhedo do que a avaliação direta nas folhas. Uma correlação positiva foi encontrada entre o número de C. vitis na face abaxial das folhas e o percentual de folhas com infestação

    Ferromagnetism in the two dimensional t-t' Hubbard model at the Van Hove density

    Full text link
    Using an improved version of the projection quantum Monte Carlo technique, we study the square-lattice Hubbard model with nearest-neighbor hopping t and next-nearest-neighbor hopping t', by simulation of lattices with up to 20 X 20 sites. For a given R=2t'/t, we consider that filling which leads to a singular density of states of the noninteracting problem. For repulsive interactions, we find an itinerant ferromagnet (antiferromagnet) for R=0.94 (R=0.2). This is consistent with the prediction of the T-matrix approximation, which sums the most singular set of diagrams.Comment: 10 pages, RevTeX 3.0 + a single postscript file with all figure
    corecore