37 research outputs found

    A Comprehensive Three-Dimensional Model of the Cochlea

    Get PDF
    The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics.Comment: 22 pages, 5 figure

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether

    Green product personality: developing a product concept made of recycled ocean plastic based on the collection of context-related personality traits

    No full text
    The replacement of conventional material with recyclates affects product personality, particularly regarding sustainability aspects influencing consumer behaviour. A definition of personality for products made of recyclates is missing in literature. As these products require appropriate aesthetics based on material origin to communicate the advantage concerning sustainability, there is a need for research in this regard. This paper aims to develop an adequate personality of a reusable water bottle made of ocean plastic by collecting personality traits that evoke associations related to the material's origin and sustainability. We conducted two quantitative field studies. Study 1 collected associated visual perceived attributes and context-related personality traits in order to develop and visualize a preliminary design. Study 2 evaluated the design regarding associated personality traits. The overall outcome was a product personality scale consisting of 23 items plus a concrete design recommendation for a water bottle made of recycled ocean plastic. The assessment of degree of sustainability was strongly influenced by participants’ associations with personal use, familiarity with usage and the factor of stability and resilience

    Energy flow in the cochlea

    No full text
    corecore