13 research outputs found

    Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    Get PDF
    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T = DSM 25276T = LMG 26725T) is proposed

    Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    Get PDF
    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T = DSM 25276T = LMG 26725T) is proposed

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Neisseria oralis sp. nov., isolated from healthy gingival plaque and clinical samples

    Get PDF
    A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9% similarity to the type strain). DNA DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1v7c and/or iso-C15 : 0 2-OH) and C18 : 1v7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332T 5DSM 25276T 5LMG 26725T) is proposed

    High-Level Vancomycin-Resistant Staphylococcus aureus Isolates Associated with a Polymicrobial Biofilm

    Get PDF
    Glycopeptides such as vancomycin are the treatment of choice for infections due to methicillin-resistant Staphylococcus aureus. This study describes the identification of high-level vancomycin-resistant S. aureus (VRSA) isolates in a polymicrobial biofilm within an indwelling nephrostomy tube in a patient in New York. S. aureus, Enterococcus faecalis, Enterococcus faecium, Micrococcus species, Morganella morganii, and Pseudomonas aeruginosa were isolated from the biofilm. For VRSA isolates, vancomycin MICs ranged from 32 to >128 ÎŒg/ml. VRSA isolates were also resistant to aminoglycosides, fluoroquinolones, macrolides, penicillin, and tetracycline but remained susceptible to chloramphenicol, linezolid, rifampin, and trimethoprim-sulfamethoxazole. The vanA gene was localized to a plasmid of ∌100 kb in VRSA and E. faecium isolates from the biofilm. Plasmid analysis revealed that the VRSA isolate acquired the 100-kb E. faecium plasmid, which was then maintained without integration into the MRSA plasmid. The tetracycline resistance genes tet(U) and tet(S), not previously detected in S. aureus isolates, were identified in the VRSA isolates. Additional resistance elements in the VRSA isolate included a multiresistance gene cluster, ermB-aadE-sat4-aphA-3, msrA (macrolide efflux), and the bifunctional aminoglycoside resistance gene aac(6â€Č)-aph(2")-Ia. Multiple combinations of resistance genes among the various isolates of staphylococci and enterococci, including vanA, tet(S), and tet(U), illustrate the dynamic nature of gene acquisition and loss within and between bacterial species throughout the course of infection. The potential for interspecies transfer of antimicrobial resistance genes, including resistance to vancomycin, may be enhanced by the microenvironment of a biofilm

    Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M. tuberculosis

    No full text
    corecore