152 research outputs found

    Viral Metagenomics on Blood-Feeding Arthropods as a Tool for Human Disease Surveillance

    Get PDF
    Surveillance and monitoring of viral pathogens circulating in humans and wildlife, together with the identification of emerging infectious diseases (EIDs), are critical for the prediction of future disease outbreaks and epidemics at an early stage. It is advisable to sample a broad range of vertebrates and invertebrates at different temporospatial levels on a regular basis to detect possible candidate viruses at their natural source. However, virus surveillance systems can be expensive, costly in terms of finances and resources and inadequate for sampling sufficient numbers of different host species over space and time. Recent publications have presented the concept of a new virus surveillance system, coining the terms “flying biological syringes”, “xenosurveillance” and “vector-enabled metagenomics”. According to these novel and promising surveillance approaches, viral metagenomics on engorged mosquitoes might reflect the viral diversity of numerous mammals, birds and humans, combined in the mosquitoes’ blood meal during feeding on the host. In this review article, we summarize the literature on vector-enabled metagenomics (VEM) techniques and its application in disease surveillance in humans. Furthermore, we highlight the combination of VEM and “invertebrate-derived DNA” (iDNA) analysis to identify the host DNA within the mosquito midgut

    The virome ofGerman bats: comparing virus discovery approaches

    Get PDF
    Bats are known to be reservoirs of several highly pathogenic viruses. Hence, the interest in bat virus discovery has been increasing rapidly over the last decade. So far, most studies have focused on a single type of virus detection method, either PCR, virus isolation or virome sequencing. Here we present a comprehensive approach in virus discovery, using all three discovery methods on samples from the same bats. By family-specific PCR screening we found sequences of paramyxoviruses, adenoviruses, herpesviruses and one coronavirus. By cell culture we isolated a novel bat adenovirus and bat orthoreovirus. Virome sequencing revealed viral sequences of ten different virus families and orders: three bat nairoviruses, three phenuiviruses, one orbivirus, one rotavirus, one orthoreovirus, one mononegavirus, five parvoviruses, seven picornaviruses, three retroviruses, one totivirus and two thymoviruses were discovered. Of all viruses identified by family-specific PCR in the original samples, none was found by metagenomic sequencing. Vice versa, none of the viruses found by the metagenomic virome approach was detected by family-specific PCRs targeting the same family. The discrepancy of detected viruses by different detection approaches suggests that a combined approach using different detection methods is necessary for virus discovery studies.Peer Reviewe

    Novel paramyxoviruses in free-ranging European bats.

    Get PDF
    The zoonotic potential of paramyxoviruses is particularly demonstrated by their broad host range like the highly pathogenic Hendra and Nipah viruses originating from bats. But while so far all bat-borne paramyxoviruses have been identified in fruit bats across Africa, Australia, South America, and Asia, we describe the detection and characterization of the first paramyxoviruses in free-ranging European bats. Moreover, we examined the possible impact of paramyxovirus infection on individual animals by comparing histo-pathological findings and virological results. Organs from deceased insectivorous bats of various species were sampled in Germany and tested for paramyxovirus RNA in parallel to a histo-pathological examination. Nucleic acids of three novel paramyxoviruses were detected, two viruses in phylogenetic relationship to the recently proposed genus Jeilongvirus and one closely related to the genus Rubulavirus. Two infected animals revealed subclinical pathological changes within their kidneys, suggestive of a similar pathogenesis as the one described in fruit bats experimentally infected with Hendra virus.Our findings indicate the presence of bat-born paramyxoviruses in geographic areas free of fruit bat species and therefore emphasize a possible virus-host co-evolution in European bats. Since these novel viruses are related to the very distinct genera Rubulavirus and Jeilongvirus, a similarly broad genetic diversity among paramyxoviruses in other Microchiroptera compared to Megachiroptera can be assumed. Given that the infected bats were either found in close proximity to heavily populated human habitation or areas of intensive agricultural use, a potential risk of the emergence of zoonotic paramyxoviruses in Europe needs to be considered

    Random sampling of the Central European bat fauna reveals the existence of numerous hitherto unknown adenoviruses<sup>+</sup>

    Get PDF
    From over 1250 extant species of the order Chiroptera, 25 and 28 are known to occur in Germany and Hungary, respectively. Close to 350 samples originating from 28 bat species (17 from Germany, 27 from Hungary) were screened for the presence of adenoviruses (AdVs) using a nested PCR that targets the DNA polymerase gene of AdVs. An additional PCR was designed and applied to amplify a fragment from the gene encoding the IVa2 protein of mastadenoviruses. All German samples originated from organs of bats found moribund or dead. The Hungarian samples were excrements collected from colonies of known bat species, throat or rectal swab samples, taken from live individuals that had been captured for faunistic surveys and migration studies, as well as internal organs of dead specimens. Overall, 51 samples (14.73%) were found positive. We detected 28 seemingly novel and six previously described bat AdVs by sequencing the PCR products. The positivity rate was the highest among the guano samples of bat colonies. In phylogeny reconstructions, the AdVs detected in bats clustered roughly, but not perfectly, according to the hosts’ families (Vespertilionidae, Rhinolophidae, Hipposideridae, Phyllostomidae and Pteropodidae). In a few cases, identical sequences were derived from animals of closely related species. On the other hand, some bat species proved to harbour more than one type of AdV. The high prevalence of infection and the large number of chiropteran species worldwide make us hypothesise that hundreds of different yet unknown AdV types might circulate in bats

    First Complete Cytochrome B Sequences and Molecular Taxonomy of Bat Species from Sri Lanka

    Get PDF
    The aim of our study was to address the research gap in the molecular taxonomy of Sri Lankan bats. The accurate identification of animals plays a major role in observing them in their natural environments and hence understanding possible disease-transmitting pathways from animals to humans. Being a tropical country, Sri Lanka has a high density of animals. There are 30 different species of bats described in Sri Lanka. Until now, the animals have been identified by observing their physical features. However, the visual identification of animals is not accurate because closely related animal groups may show similar physical features. During our study, we accurately differentiated five bat groups living in one of the largest caves in Sri Lanka by using a more sophisticated laboratory technique. Using molecular techniques, we were able to provide more accurate results than by the visual identification of the bats. The results from our study are stored in the NCBI database as a baseline for a repository of Sri Lankan bats. With the new sequence data provided here, we filled the gap concerning the molecular taxonomy of bat species of the entire region and we contributed to the future conservation and systematic studies of these mammalsThis is the first report on the molecular identification and phylogeny of the Rousettus leschenaultii Desmarest, 1810, Rhinolophus rouxii Temminck, 1835, Hipposideros speoris Schneider, 1800, Hipposideros lankadiva Kelaart, 1850, and Miniopterus fuliginosus Kuhl, 1817, bat species in Sri Lanka, inferred from analyses by mitochondrially encoded cytochrome b gene sequences. Recent research has indicated that bats show enormous cryptic genetic diversity. Moreover, even within the same species, the acoustic properties of echolocation calls and morphological features such as fur color could vary in different populations. Therefore, we have used molecular taxonomy for the accurate identification of five bat species recorded in one of the largest cave populations in Sri Lanka. The bats were caught using a hand net, and saliva samples were collected non-invasively from each bat by using a sterile oral swab. Nucleic acids were extracted from the oral swab samples, and mitochondrial DNA was amplified by using primers targeting the mitochondrially encoded cytochrome b gene. This study reports the first molecular evidence for the identification of five bat species in Sri Lanka. Our findings will contribute to future conservation and systematic studies of bats in Sri Lanka. This study will also provide the basis for a genetic database of Sri Lankan bats which will contribute significantly to the investigation of potentially zoonotic bat viruses.Peer Reviewe

    Paramyxovirus Diversity within One Population of Miniopterus fuliginosus Bats in Sri Lanka

    Get PDF
    Bats are known as typical reservoirs for a number of viruses, including viruses of the family Paramyxoviridae. Representatives of the subfamily Orthoparamyxovirinae are distributed worldwide and can cause mild to fatal diseases when infecting humans. The research on Paramyxoviruses (PMVs) from different bat hosts all over the world aims to understand the diversity, evolution and distribution of these viruses and to assess their zoonotic potential. A high number of yet unclassified PMVs from bats are recorded. In our study, we investigated bat species from the families Rhinolophidae, Hipposiderae, Pteropodidae and Miniopteridae that are roosting sympatrically in the Wavul Galge cave (Koslanda, Sri Lanka). The sampling at three time points (March and July 2018; January 2019) and screening for PMVs with a generic PCR show the presence of different novel PMVs in 10 urine samples collected from Miniopterus fuliginosus. Sequence analysis revealed a high similarity of the novel strains among each other and to other unclassified PMVs collected from Miniopterus bats. In this study, we present the first detection of PMVs in Sri Lanka and the presence of PMVs in the bat species M. fuliginosus for the first time.Peer Reviewe

    An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus

    Get PDF
    Endogenous bornavirus-like L (EBLL) elements are inheritable sequences derived from ancient bornavirus L genes that encode a viral RNA-dependent RNA polymerase (RdRp) in many eukaryotic genomes. Here, we demonstrate that bats of the genus Eptesicus have preserved for more than 11.8 million years an EBLL element named eEBLL-1, which has an intact open reading frame of 1,718 codons. The eEBLL-1 coding sequence revealed that functional motifs essential for mononegaviral RdRp activity are well conserved in the EBLL-1 genes. Genetic analyses showed that natural selection operated on eEBLL-1 during the evolution of Eptesicus. Notably, we detected efficient transcription of eEBLL-1 in tissues from Eptesicus bats. To the best of our knowledge, this study is the first report showing that the eukaryotic genome has gained a riboviral polymerase gene from an ancient virus that has the potential to encode a functional RdRp

    Full Genome of batCoV/MinFul/2018/SriLanka, a Novel Alpha-Coronavirus Detected in Miniopterus fuliginosus, Sri Lanka

    Get PDF
    Coronaviruses (CoV) are divided into the genera α-CoVs, β-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and β-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the β-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and β-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and β-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.Peer Reviewe
    corecore