30 research outputs found

    Recessive Retinopathy Consequent on Mutant G-Protein β Subunit 3 (GNB3)

    Get PDF
    IMPORTANCE: Mutations in phototransduction and retinal signaling genes are implicated in many retinopathies. To our knowledge, GNB3 encoding the G-protein β subunit 3 (Gβ3) has not previously been implicated in human disease. OBSERVATIONS: In this brief report, whole-exome sequencing was conducted on a patient with distinct inherited retinal disease presenting in childhood, with a phenotype characterized by nystagmus, normal retinal examination, and mild disturbance of the central macula on detailed retinal imaging. This sequencing revealed a homozygous GNB3 nonsense mutation (c.124C>T; p.Arg42Ter). Whole-exome sequencing was conducted from April 2015 to July 2015. CONCLUSIONS AND RELEVANCE: Expressed in cone photoreceptors and ON-bipolar cells, Gβ3 is essential in phototransduction and ON-bipolar cell signaling. Knockout of Gnb3 in mice results in dysfunction of cone photoreceptors and ON-bipolar cells and a naturally occurring chicken mutation leads to retinal degeneration. Identification of further affected patients may allow description of the phenotypic and genotypic spectrum of disease associated with GNB3 retinopathy

    Intrinsic NLRP3 inflammasome activity is critical for normal adaptive immunity via regulation of IFN-γ in CD4+ T cells

    Get PDF
    The NLRP3 inflammasome controls interleukin-1b maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described.We found that the NLRP3 inflammasome assembles in human CD4+ Tcells and initiates caspase-1–dependent interleukin-1b secretion, thereby promoting interferon-g production and T helper 1 (TH1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in Tcells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to “innate immune cells” but is an integral component of normal adaptive TH1 responses

    <i>KCNV2</i>-associated retinopathy:genotype-phenotype correlations-<i>KCNV2</i> study group report 3

    Get PDF
    Background/aims To investigate genotype–phenotype associations in patients with KCNV2 retinopathy.Methods Review of clinical notes, best-corrected visual acuity (BCVA), molecular variants, electroretinography (ERG) and retinal imaging. Subjects were grouped according to the combination of KCNV2 variants—two loss-of-function (TLOF), two missense (TM) or one of each (MLOF)—and parameters were compared.Results Ninety-two patients were included. The mean age of onset (mean±SD) in TLOF (n=55), TM (n=23) and MLOF (n=14) groups was 3.51±0.58, 4.07±2.76 and 5.54±3.38 years, respectively. The mean LogMAR BCVA (±SD) at baseline in TLOF, TM and MLOF groups was 0.89±0.25, 0.67±0.38 and 0.81±0.35 for right, and 0.88±0.26, 0.69±0.33 and 0.78±0.33 for left eyes, respectively. The difference in BCVA between groups at baseline was significant in right (p=0.03) and left eyes (p=0.035). Mean outer nuclear layer thickness (±SD) at baseline in TLOF, MLOF and TM groups was 37.07±15.20 µm, 40.67±12.53 and 40.38±18.67, respectively, which was not significantly different (p=0.85). The mean ellipsoid zone width (EZW) loss (±SD) was 2051 µm (±1318) for patients in the TLOF, and 1314 µm (±965) for MLOF. Only one patient in the TM group had EZW loss at presentation. There was considerable overlap in ERG findings, although the largest DA 10 ERG b-waves were associated with TLOF and the smallest with TM variants.Conclusions Patients with missense alterations had better BCVA and greater structural integrity. This is important for patient prognostication and counselling, as well as stratification for future gene therapy trials

    KCNV2-associated retinopathy: genotype–phenotype correlations – KCNV2 study group report 3

    Get PDF
    BACKGROUND/AIMS: To investigate genotype–phenotype associations in patients withKCNV2retinopathy. METHODS: Review of clinical notes, best-corrected visual acuity (BCVA), molecular variants, electroretinography (ERG) and retinal imaging. Subjects were grouped according to the combination ofKCNV2variants—two loss-of-function (TLOF), two missense (TM) or one of each (MLOF)—and parameters were compared. RESULTS: Ninety-two patients were included. The mean age of onset (mean±SD) in TLOF (n=55), TM (n=23) and MLOF (n=14) groups was 3.51±0.58, 4.07±2.76 and 5.54±3.38 years, respectively. The mean LogMAR BCVA (±SD) at baseline in TLOF, TM and MLOF groups was 0.89±0.25, 0.67±0.38 and 0.81±0.35 for right, and 0.88±0.26, 0.69±0.33 and 0.78±0.33 for left eyes, respectively. The difference in BCVA between groups at baseline was significant in right (p=0.03) and left eyes (p=0.035). Mean outer nuclear layer thickness (±SD) at baseline in TLOF, MLOF and TM groups was 37.07±15.20 µm, 40.67±12.53 and 40.38±18.67, respectively, which was not significantly different (p=0.85). The mean ellipsoid zone width (EZW) loss (±SD) was 2051 µm (±1318) for patients in the TLOF, and 1314 µm (±965) for MLOF. Only one patient in the TM group had EZW loss at presentation. There was considerable overlap in ERG findings, although the largest DA 10 ERG b-waves were associated with TLOF and the smallest with TM variants. CONCLUSIONS: Patients with missense alterations had better BCVA and greater structural integrity. This is important for patient prognostication and counselling, as well as stratification for future gene therapy trials

    Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype

    Get PDF
    The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects

    ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants

    Get PDF
    PURPOSE: ABCA4-associated disease, a recessive retinal dystrophy, is hallmarked by a large proportion of patients with only one pathogenic ABCA4 variant, suggestive for missing heritability. METHODS: By locus-specific analysis of ABCA4, combined with extensive functional studies, we aimed to unravel the missing alleles in a cohort of 67 patients (p), with one (p = 64) or no (p = 3) identified coding pathogenic variants of ABCA4. RESULTS: We identified eight pathogenic (deep-)intronic ABCA4 splice variants, of which five are novel and six structural variants, four of which are novel, including two duplications. Together, these variants account for the missing alleles in 40.3% of patients. Furthermore, two novel variants with a putative cis-regulatory effect were identified. The common hypomorphic variant c.5603A>T p.(Asn1868Ile) was found as a candidate second allele in 43.3% of patients. Overall, we have elucidated the missing heritability in 83.6% of our cohort. In addition, we successfully rescued three deep-intronic variants using antisense oligonucleotide (AON)-mediated treatment in HEK 293-T cells and in patient-derived fibroblast cells. CONCLUSION: Noncoding pathogenic variants, novel structural variants, and a common hypomorphic allele of the ABCA4 gene explain the majority of unsolved cases with ABCA4-associated disease, rendering this retinopathy a model for missing heritability in autosomal recessive disorders

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Gene Defects in the Coenzyme Q10 Biosynthesis Pathway: A Previously Unrecognised Cause of Retinitis Pigmentosa

    No full text
    Coenzyme Q10 (CoQ10) is synthesised in the inner mitochondrial membrane across all systems with higher expression in high energy demand tissues (e.g. liver, heart, kidney, muscle, eye). CoQ10 is an essential electron carrier along the mitochondrial respiratory chain during the ATP synthesis. Thus, biallelic pathogenic variants in nuclear CoQ10 biosynthesis genes lead to a primary CoQ10 deficiency and consequent dysfunction of the respiratory chain. Clinical phenotyping has suggested retinopathy may be part of the syndromic phenotype in a number of cases of primary CoQ10 deficiency. A recent study reported a novel presentation of the disease that included nephropathy and retinopathy without neurological involvement. We investigated CoQ10 biosynthesis defects in inherited retinal dystrophy (IRD)

    Pharmacological uncoupling of activation induced increases in CBF and CMRO2

    No full text
    Neurovascular coupling provides the basis for many functional neuroimaging techniques. Nitric oxide (NO), adenosine, cyclooxygenase, CYP450 epoxygenase, and potassium are involved in dilating arterioles during neuronal activation. We combined inhibition of NO synthase, cyclooxygenase, adenosine receptors, CYP450 epoxygenase, and inward rectifier potassium (Kir) channels to test whether these pathways could explain the blood flow response to neuronal activation. Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) of the somatosensory cortex were measured during forepaw stimulation in 24 rats using a laser Doppler/spectroscopy probe through a cranial window. Combined inhibition reduced CBF responses by two-thirds, somatosensory evoked potentials and activation-induced CMRO2 increases remained unchanged, and deoxy-hemoglobin (deoxy-Hb) response was abrogated. This shows that in the rat somatosensory cortex, one-third of the physiological blood flow increase is sufficient to prevent microcirculatory increase of deoxy-Hb concentration during neuronal activity. The large physiological CBF response is not necessary to support small changes in CMRO2. We speculate that the CBF response safeguards substrate delivery during functional activation with a considerable ‘safety factor'. Reduction of the CBF response in pathological states may abolish the BOLD–fMRI signal, without affecting underlying neuronal activity
    corecore