65 research outputs found

    Refractory Age-Related Macular Degeneration Due to Concurrent Central Serous Chorioretinopathy in Previously Well-Controlled Eyes

    Get PDF
    Background: During the treatment of age-related macular degeneration with anti-vascular endothelial growth factor (VEGF) drugs, we often see cases with anti-VEGF-resistant refractory subretinal fluid. In this report, we present two cases of anti-VEGF-resistant refractory age-related macular degeneration (AMD) due to the concurrent development of central serous chorioretinopathy (CSCR) in eyes previously well controlled with intravitreal anti-VEGF injections. Case presentation: Two patients underwent intravitreal aflibercept for the treatment of neovascular AMD. Initially, both patients responded well to intravitreal aflibercept, resulting in the complete resolution of the subretinal fluid. However, both patients subsequently developed sudden-onset refractory subretinal fluid that did not respond to repeated intravitreal aflibercept. Fluorescein angiography, indocyanine green angiography, and swept-source optical coherence tomography revealed focal leakage spots, choroidal hyperpermeability, and dilated choroidal vessels, respectively, which were distinct from the pre-existing choroidal neovascularization and suggestive of newly developed CSCR. Laser photocoagulation of the leak spots resulted in the complete resolution of the once-refractory subretinal fluid and the maintenance of vision. Conclusions: Our cases highlight that anti-VEGF-refractory subretinal fluid may occur secondary to concurrent CSCR in patients receiving regular anti-VEGF treatments for AMD. In those patients, treatment for CSCR is effective for controlling subretinal fluid that is unresolved by anti-VEGF treatment

    SlIAA9 Controls Tomato Elongation

    Get PDF
    Tomato INDOLE-3-ACETIC ACID9 (SlIAA9) is a transcriptional repressor in auxin signal transduction, and SlIAA9 knockout tomato plants develop parthenocarpic fruits without fertilization. We generated sliaa9 mutants with parthenocarpy in several commercial tomato cultivars (Moneymaker, Rio Grande, and Ailsa Craig) using CRISPR-Cas9, and null-segregant lines in the T1 generation were isolated by self-pollination, which was confirmed by PCR and Southern blot analysis. We then estimated shoot growth phenotypes of the mutant plants under different light (low and normal) conditions. The shoot length of sliaa9 plants in Moneymaker and Rio Grande was smaller than those of wild-type cultivars in low light conditions, whereas there was not clear difference between the mutant of Ailsa Craig and the wild-type under both light conditions. Furthermore, young seedlings in Rio Grande exhibited shade avoidance response in hypocotyl growth, in which the hypocotyl lengths were increased in low light conditions, and sliaa9 mutant seedlings of Ailsa Craig exhibited enhanced responses in this phenotype. Fruit production and growth rates were similar among the sliaa9 mutant tomato cultivars. These results suggest that control mechanisms involved in the interaction of AUX/IAA9 and lights condition in elongation growth differ among commercial tomato cultivars

    JRAB/MICAL-L2 undergoes liquid–liquid phase separation to form tubular recycling endosomes

    Get PDF
    Elongated tubular endosomes play essential roles in diverse cellular functions. Multiple molecules have been implicated in tubulation of recycling endosomes, but the mechanism of endosomal tubule biogenesis has remained unclear. In this study, we found that JRAB/MICAL-L2 induces endosomal tubulation via activated Rab8A. In association with Rab8A, JRAB/MICAL-L2 adopts its closed form, which functions in the tubulation of recycling endosomes. Moreover, JRAB/MICAL-L2 induces liquid–liquid phase separation, initiating the formation of tubular recycling endosomes upon overexpression. Between its N-terminal and C-terminal globular domains, JRAB/MICAL-L2 contains an intrinsically disordered region, which contributes to the formation of JRAB/MICAL-L2 condensates. Based on our findings, we propose that JRAB/MICAL-L2 plays two sequential roles in the biogenesis of tubular recycling endosomes: first, JRAB/MICAL-L2 organizes phase separation, and then the closed form of JRAB/MICAL-L2 formed by interaction with Rab8A promotes endosomal tubulation

    Improved Sendai viral system for reprogramming to naive pluripotency

    Get PDF
    優れた多分化能を持つヒトのナイーブ型iPS細胞を迅速に作製する方法を発明. 京都大学プレスリリース. 2022-10-18.A novel method for generating naive human iPS cells with significantly higher differentiation potency. 京都大学プレスリリース. 2022-11-15.Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine

    Mitochondrial DNA as a biomarker for acute central serous chorioretinopathy: A case-control study

    Get PDF
    The literature suggests that stress may play a pivotal role in the precipitation of acute central serous chorioretinopathy (CSC) because chorioretinal integrity can be affected by the psychosocial state of the patient, indicating the need for a biomarker. Not only physical stress but also psychological stress causes many types of physical disorders. However, little is known about the pathophysiology of stress-induced disease. The objective of this study was to investigate whether serum factors might be involved in the development of stress-induced ocular diseases. Methods: This observational case series included 33 eyes of 33 consecutive patients with treatment-naïve acute CSC. Fifty eyes of 50 age-matched healthy volunteers were included in this study as non-CSC controls. Serum samples were collected from all participants, and the levels of mitochondrial DNA (mtDNA) were measured by quantitative real-time (RT)-PCR. Serum levels of high-mobility group box (HMGB) 1 and 8-hydroxy-2′-deoxyguanosine (8-OHdG), biological markers of acute/chronic inflammation and oxidative stress, were also measured. The relationships between serum mtDNA, 8-OHdG, and HMGB1 concentrations were investigated by multivariate regression analysis, alongside an assessment of clinical data. Results: In the treatment-naïve acute CSC group, the serum mtDNA levels (36.5 ± 32.4 ng/mL) were significantly higher than the levels in the control group (7.4 ± 5.9 ng/mL; p < 0.001). Serum levels of 8-OHdG and HMGB1 in treatment-naïve acute CSC patients measured 0.12 ± 0.08 ng/mL and 18.1 ± 35.0 ng/mL, respectively, indicating that HMGB1 levels were elevated in CSC compared with the control group. Multivariable regression analysis demonstrated that increased serum mtDNA levels were significantly associated with the height of serous retinal detachment. Conclusion: We showed serum mtDNA and HMGB1 level elevation and its relation to the clinical activities of CSC, indicating that serum mtDNA and HMGB1 could serve as biomarkers for the acute phase of the disease. The use of these biomarkers makes it possible to predict disease onset and determine disease severity

    Diagnosis of choroidal disease with deep learning-based image enhancement and volumetric quantification of optical coherence tomography

    Get PDF
    Purpose: The purpose of this study was to quantify choroidal vessels (CVs) in pathological eyes in three dimensions (3D) using optical coherence tomography (OCT) and a deep-learning analysis. Methods: A single-center retrospective study including 34 eyes of 34 patients (7 women and 27 men) with treatment-naïve central serous chorioretinopathy (CSC) and 33 eyes of 17 patients (7 women and 10 men) with Vogt-Koyanagi-Harada disease (VKH) or sympathetic ophthalmitis (SO) were imaged consecutively between October 2012 and May 2019 with a swept source OCT. Seventy-seven eyes of 39 age-matched volunteers (26 women and 13 men) with no sign of ocular pathology were imaged for comparison. Deep-learning-based image enhancement pipeline enabled CV segmentation and visualization in 3D, after which quantitative vessel volume maps were acquired to compare normal and diseased eyes and to track the clinical course of eyes in the disease group. Region-based vessel volumes and vessel indices were utilized for disease diagnosis. Results: OCT-based CV volume maps disclose regional CV changes in patients with CSC, VKH, or SO. Three metrics, (i) choroidal volume, (ii) CV volume, and (iii) CV index, exhibit high sensitivity and specificity in discriminating pathological choroids from healthy ones. Conclusions: The deep-learning analysis of OCT images described here provides a 3D visualization of the choroid, and allows quantification of features in the datasets to identify choroidal disease and distinguish between different diseases. Translational Relevance: This novel analysis can be applied retrospectively to existing OCT datasets, and it represents a significant advance toward the automated diagnosis of choroidal pathologies based on observations and quantifications of the vasculature

    Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    Get PDF
    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease

    Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    Get PDF
    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro

    Combined analysis of cell growth and apoptosis-regulating proteins in HPVs associated anogenital tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of human papillomavirus (HPV) associated with Bowenoid papulosis and condyloma acuminatum of anogenital tumors are still unknown. Here we evaluated molecules that are relevant to cellular proliferation and regulation of apoptosis in HPV associated anogenital tumors.</p> <p>Methods</p> <p>We investigated the levels of telomerase activity, and inhibitor of apoptosis proteins (IAPs) family (c-IAP1, c-IAP2, XIAP) and c-Myc mRNA expression levels in 20 specimens of Bowenoid papulosis and 36 specimens of condyloma acuminatum in anogenital areas. Overall, phosphorylated (p-) AKT, p-ribosomal protein S6 (S6) and p-4E-binding protein 1 (4EBP1) expression levels were examined by immunohistochemistry in anogenital tumors both with and without positive telomerase activity.</p> <p>Results</p> <p>Positive telomerase activity was detected in 41.7% of Bowenoid papulosis and 27.3% of condyloma acuminatum compared to normal skin (<it>p </it>< 0.001). In contrast, the expression levels of Bowenoid papulosis indicated that c-IAP1, c-IAP2 and XIAP mRNA were significantly upregulated compared to those in both condyloma acuminatum samples (<it>p </it>< 0.001, <it>p </it>< 0.001, <it>p </it>= 0.022, respectively) and normal skin (<it>p </it>< 0.001, <it>p </it>= 0.002, <it>p </it>= 0.034, respectively). Overall, 30% of Bowenoid papulosis with high risk HPV strongly promoted IAPs family and c-Myc but condyloma acuminatum did not significantly activate those genes. Immunohistochemically, p-Akt and p-S6 expressions were associated with positive telomerase activity but not with p-4EBP1 expression.</p> <p>Conclusion</p> <p>Combined analysis of the IAPs family, c-Myc mRNA expression, telomerase activity levels and p-Akt/p-S6 expressions may provide clinically relevant molecular markers in HPV associated anogenital tumors.</p

    Essential Role of Neuron-Enriched Diacylglycerol Kinase (DGK), DGKβ in Neurite Spine Formation, Contributing to Cognitive Function

    Get PDF
    BACKGROUND: Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKbeta is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We, therefore, developed DGKbeta KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKbeta. In addition, overexpression of DGKbeta in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKbeta, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKbeta but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that membrane-localized DGKbeta regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory
    corecore