43 research outputs found

    Relationship between sources and patterns of VOCs in indoor air

    Get PDF
    AbstractPeople spend most of their daytime in indoor environments. Their activities influence the composition of the indoor air by emitting volatile organic compounds (VOCs). The increasing number of different VOCs became the focus of attention in recent years as the question arises from the relationship between exposure to air pollutants and diseases. The present study of flats in Leipzig (Germany) is based on measurements of 60 different VOCs and is unique in the field of indoor air quality due to its enormous size of samples (n=2 242) and questionnaire data. The main purpose of our analysis was to identify the sources and patterns that characterize airborne VOCs in occupied flats. We combined two methods, principal components analysis (PCA) and non–negative matrix factorization (NMF), to assign compounds to their origin and to understand the coinstantaneous existence of several VOCs. PCA clustering provided a source apportionment and yielded 10 principal components (PCs) with an explained variance of 72%. However, real indoor air quality is often affected by combined sources. NMF reveals characteristic compositions of VOCs in indoor environments and emphasizes that constantly recurring structures are not single sources, but rather fusions of them, so called patterns. Interpreting these sources, we realized that homes were strongly influenced by ventilation, human activities, furnishings, natural processes (such as solar radiation) or their combinations. The very large set of samples and the combination with questionnaires applied on this comprehensive assessment of VOCs allows generalizing the results to homes in middle–scale cities with minor industrial pollution. As a conclusion, single VOC–dose–response relationships are inopportune for situations when indoor sources occur in combination. Further studies are necessary to assess associated health risks

    Metabolomics reveals effects of maternal smoking on endogenous metabolites from lipid metabolism in cord blood of newborns

    Get PDF
    Introduction: A general detrimental effect of smoking during pregnancy on the health of newborn children is well-documented, but the detailed mechanisms remain elusive. Objectives: Beside the specific influence of environmental tobacco smoke derived toxicants on developmental regulation the impact on the metabolism of newborn children is of particular interest, first as a general marker of foetal development and second due to its potential predictive value for the later occurrence of metabolic diseases. Methods: Tobacco smoke exposure information from a questionnaire was confirmed by measuring the smoking related metabolites S-Phenyl mercapturic acid, S-Benzyl mercapturic acid and cotinine in maternal urine by LC–MS/MS. The impact of smoking on maternal endogenous serum metabolome and children’s cord blood metabolome was assessed in a targeted analysis of 163 metabolites by an LC–MS/MS based assay. The anti-oxidative status of maternal serum samples was analysed by chemoluminiscence based method. Results: Here we present for the first time results of a metabolomic assessment of the cordblood of 40 children and their mothers. Several analytes from the group of phosphatidylcholines, namely PCaaC28:1, PCaaC32:3, PCaeC30:1, PCaeC32:2, PCaeC40:1, and sphingomyelin SM C26:0, differed significantly in mothers and children’s sera depending on smoking status. In serum of smoking mothers the antioxidative capacity of water soluble compounds was not significantly changed while there was a significant decrease in the lipid fraction. Conclusion: Our data give evidence that smoking during pregnancy alters both the maternal and children’s metabolome. Whether the different pattern found in adults compared to newborn children could be related to different disease outcomes should be in the focus of future studies

    Analysis of the STAT3 interactome using in-situ biotinylation and SILAC

    No full text
    Signal transducer and activator of transcription 3 (STAT3) is activated by a variety of cytokines and growth factors. To generate a comprehensive data set of proteins interacting specifically with STAT3, we applied stable isotope labeling with amino acids in cell culture (SILAC). For high-affinity pull-down using streptavidin, we fused STAT3 with a short peptide tag allowing biotinylation in situ (bio-tag), which did not affect STAT3 functions. By this approach, 3642 coprecipitated proteins were detected in human embryonic kidney-293 cells. Filtering using statistical and functional criteria finally extracted 136 proteins as putative interaction partners of STAT3. Both, a physical interaction network analysis and the enrichment of known and predicted interaction partners suggested that our filtering criteria successfully enriched true STAT3 interactors. Our approach identified numerous novel interactors, including ones previously predicted to associate with STAT3. By reciprocal coprecipitation, we were able to verify the physical association between STAT3 and selected interactors, including the novel interaction with TOX4, a member of the TOX high mobility group box family. Applying the same method, we next investigated the activation-dependency of the STAT3 interactome. Again, we identified both known and novel interactions. Thus, our approach allows to study protein–protein interaction effectively and comprehensively

    Optimization of parameters for coverage of low molecular weight proteins

    Get PDF
    Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT-CID and IT-ETD allowed the validation of 75% of the identified proteins using this orthogonal fragmentation technique. Furthermore, a new approach to evaluating and improving the completeness of protein databases that utilizes the program RNAcode was introduced and examined.Helmholtz Alliance on Systems BiologyEuropean Cooperation in the Field of Scientific and Technical Research (Organization) (COST Action "Systems Chemistry" CM0703)Deutsche Forschungsgemeinschaft (DFG) (Grant no. STA 850/7-1)Erwin Schrodinger Fellowshi

    Antiarrhythmic and cardiac electrophysiological effects of SZV-270, a novel compound with combined Class I/B and Class III effects, in rabbits and dogs

    Get PDF
    Cardiovascular diseases are the leading causes of mortality. Sudden cardiac death is most commonly caused by ventricular fibrillation (VF). Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and a major cause of stroke and heart failure. Pharmacological management of VF and AF remains suboptimal due to limited efficacy of antiarrhythmic drugs and their ventricular proarrhythmic adverse effects. In this study, the antiarrhythmic and cardiac cellular electrophysiological effects of SZV-270, a novel compound, were investigated in rabbit and canine models. SZV-270 significantly reduced the incidence of VF in rabbits subjected to coronary artery occlusion/reperfusion, reduced the incidence of burst-induced AF in a tachypaced conscious canine model of AF. SZV-270 prolonged frequency corrected QT interval, lengthened action potential duration and effective refractory period in ventricular and atrial preparations and blocked IKr in isolated cardiomyocytes (Class III effects), reduced maximum rate of depolarization (Vmax) at cycle lengths smaller than 1000 ms in ventricular preparations (Class I/B effect). Importantly, SZV-270 did not provoke Torsades de Pointes arrhythmia in an anesthetized rabbit proarrhythmia model characterized by impaired repolarization reserve. In conclusion, SZV-270 with its combined Class I/B and III effects can prevent re-entry arrhythmias with reduced risk of provoking drug-induced Torsades de Pointes

    Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas

    Get PDF
    After reductions of fugitive and diffuse emissions by an industrial complex, a follow-up study was performed to determine the time variability of volatile organic compounds (VOCs) and the lifetime cancer risk (LCR). Passive samplers (3 M monitors) were placed outdoors (n = 179) and indoors (n = 75) in industrial, urban, and control areas for 4 weeks. Twenty-five compounds including n-alkanes, cycloalkanes, aromatics, chlorinated hydrocarbons, and terpenes were determined by GC/MS. The results show a significant decrease of all VOCs, especially in the industrial area and to a lesser extent in the urban area. The median outdoor concentration of benzene in the industrial area declined compared to the former study, around 85 % and about 50 % in the urban area, which in the past was strongly influenced by industrial emissions. Other carcinogenic compounds like styrene and tetrachloroethylene were reduced to approximately 60 %. VOC concentrations in control areas remained nearly unchanged. According to the determined BTEX ratios and interspecies correlations, in contrast to the previous study, traffic was identified as the main emission source in the urban and control areas and showed an increased influence in the industrial area. The LCR, calculated for benzene, styrene, and tetrachloroethylene, shows a decrease of one order of magnitude in accordance to the decreased total VOC concentrations and is now acceptable according to values proposed by the World Health Organization.Fil: Colman Lerner, Jorge Esteban. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de QuĂ­mica. Centro de Investigaciones del Medio Ambiente; Argentina. Helmholtz Centre for Environmental Research; Alemania. Universidad de Leipzig, Alemania, Facultad de Medicina; Alemania. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Centro de InvestigaciĂłn y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco". Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de InvestigaciĂłn y Desarrollo en Ciencias Aplicadas; ArgentinaFil: Kohajda, Tibor. Helmholtz Centre for Environmental Research; AlemaniaFil: Aguilar, Myriam Elisabeth. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de QuĂ­mica. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: Massolo, Laura Andrea. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de QuĂ­mica. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: SĂĄnchez, Érica Yanina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de QuĂ­mica. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: Porta, Atilio AndrĂ©s. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de QuĂ­mica. Centro de Investigaciones del Medio Ambiente; ArgentinaFil: Opitz, Philipp. Universitat Leipzig; AlemaniaFil: Wichmann, Gunnar. Universitat Leipzig; AlemaniaFil: Herbarth, Olf. Universitat Leipzig; AlemaniaFil: Mueller, Andrea. Helmholtz Centre for Environmental Research; Alemani
    corecore