12,821 research outputs found

    Wind and solar powered turbine

    Get PDF
    A power generating station having a generator driven by solar heat assisted ambient wind is described. A first plurality of radially extendng air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the fist plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind drien power generating system operates in electrical cogeneration mode with a fuel powered prime mover

    Surface Operators in N=2 Abelian Gauge Theory

    Full text link
    We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly prove that for any embedding of surface operators in a general, twisted N=2 pure abelian theory on an arbitrary four-manifold, the parameters transform naturally under the SL(2,Z) duality of the theory. However, for nontrivially-embedded surface operators, exact S-duality holds if and only if the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality holds up to a c-number at most, regardless. Nevertheless, this observation sets the stage for a physical proof of a remarkable mathematical result by Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson invariants solely in terms of the ordinary Donaldson invariants--which, will appear, among other things, in forthcoming work. As a prelude to that, the effective interaction on the corresponding u-plane will be computed. In addition, the dependence on second Stiefel-Whitney classes and the appearance of a Spin^c structure in the associated low-energy Seiberg-Witten theory with surface operators, will also be demonstrated. In the process, we will stumble upon an interesting phase factor that is otherwise absent in the "unramified" case.Comment: 46 pages. Minor refinemen

    Inverse Ising inference using all the data

    Full text link
    We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples with good accuracy and that the use of l1l_1-regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.Comment: 5 pages, 2 figures. Accepted versio

    Anisotropic Dirac fermions in a Bi square net of SrMnBi2

    Get PDF
    We report the highly anisotropic Dirac fermions in a Bi square net of SrMnBi2, based on a first principle calculation, angle resolved photoemission spectroscopy, and quantum oscillations for high-quality single crystals. We found that the Dirac dispersion is generally induced in the (SrBi)+ layer containing a double-sized Bi square net. In contrast to the commonly observed isotropic Dirac cone, the Dirac cone in SrMnBi2 is highly anisotropic with a large momentum-dependent disparity of Fermi velocities of ~ 8. These findings demonstrate that a Bi square net, a common building block of various layered pnictides, provide a new platform that hosts highly anisotropic Dirac fermions.Comment: 5 pages, 4 figure

    Consistency of the Hybrid Regularization with Higher Covariant Derivative and Infinitely Many Pauli-Villars

    Get PDF
    We study the regularization and renormalization of the Yang-Mills theory in the framework of the manifestly invariant formalism, which consists of a higher covariant derivative with an infinitely many Pauli-Villars fields. Unphysical logarithmic divergence, which is the problematic point on the Slavnov's method, does not appear in our scheme, and the well-known vale of the renormalization group functions are derived. The cancellation mechanism of the quadratic divergence is also demonstrated by calculating the vacuum polarization tensor of the order of Λ0\Lambda^0 and Λ4\Lambda^{-4}. These results are the evidence that our method is valid for intrinsically divergent theories and is expected to be available for the theory which contains the quantity depending on the space-time dimensions, like supersymmetric gauge theories.Comment: 35 pages, 21 figures, latex 2e. Some texts are added. This version will appear in Int. J. Mod. Phys.

    Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population

    Get PDF
    Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18). Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity

    Parts verification for multi-level-dependent demand manufacturing systems: a recognition and classification structure

    Get PDF
    This research has developed and implemented a part recognition and classification structure to execute parts verification in a multi-level dependent demand manufacturing system. The part recognition algorithm enables the parent and child relationship between parts to be recognised in a finite-capacitated manufacturing system. This algorithm was developed using SIMAN simulation language and implemented in a multi-level dependent demand manufacturing simulation model. The part classification structure enables the modelling of a multi-level dependent demand manufacturing between parts to be carried out effectively. The part classification structure was programmed using Visual Basic Application (VBA) and was integrated to the work-to-list generated from a simulated MRP model. This part classification structure was then implemented in the multi-level dependent demand manufacturing simulation model. Two stages of implementation, namely parameterisation and execution, of the part recognition and classification structure were carried out. A real case study was used and five detail steps of execution were processed. Simulation experiments and MRP were run to verify and validate the part recognition and classification structure. The results led to the conclusion that implementation of the recognition and classification structure has effectively verified the correct parts and sub-assemblies used for the correct product and order. No parts and sub-assemblies shortages were found, and the quantity required was produced. The scheduled release for some orders was delayed due to overload of the required resources. When the loading is normal, all scheduled release timing is adhered to. The recognition and classification structure has a robust design; hence it can be easily adapted to new systems parameter to study a different or more complex case

    Statistical Basis for Predicting Technological Progress

    Get PDF
    Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models have been proposed for predicting technological improvement, but how well do these models perform? An early hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative hypothesis is Moore's law, which can be generalized to say that technologies improve exponentially with time. Other alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright's law produces the best forecasts, but Moore's law is not far behind. We discover a previously unobserved regularity that production tends to increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would make Moore's law and Wright's law indistinguishable, as originally pointed out by Sahal. We show for the first time that these regularities are observed in data to such a degree that the performance of these two laws is nearly tied. Our results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological change, and assessments of candidate technologies and policies for climate change mitigation

    Tunable spin-selective loading of a silicon spin qubit

    Full text link
    The remarkable properties of silicon have made it the central material for the fabrication of current microelectronic devices. Silicon's fundamental properties also make it an attractive option for the development of devices for spintronics and quantum information processing. The ability to manipulate and measure spins of single electrons is crucial for these applications. Here we report the manipulation and measurement of a single spin in a quantum dot fabricated in a silicon/silicon-germanium heterostructure. We demonstrate that the rate of loading of electrons into the device can be tuned over an order of magnitude using a gate voltage, that the spin state of the loaded electron depends systematically on the loading voltage level, and that this tunability arises because electron spins can be loaded through excited orbital states of the quantum dot. The longitudinal spin relaxation time T1 is measured using single-shot pulsed techniques and found to be ~3 seconds at a field of 1.85 Tesla. The demonstration of single spin measurement as well as a long spin relaxation time and tunability of the loading are all favorable properties for spintronics and quantum information processing applications.Comment: 4 pages, 3 figures, Supplemental Informatio
    corecore