1,527 research outputs found

    Whole-body magnetic resonance imaging (WB-MRI) for cancer screening in asymptomatic subjects of the general population: review and recommendations.

    Get PDF
    BACKGROUND:The number of studies describing the use of whole-body magnetic resonance imaging (WB-MRI) for screening of malignant tumours in asymptomatic subjects is increasing. Our aim is to review the methodologies used and the results of the published studies on per patient and per lesion analysis, and to provide recommendations on the use of WB-MRI for cancer screening. MAIN BODY:We identified 12 studies, encompassing 6214 WB-MRI examinations, which provided the rates of abnormal findings and findings suspicious for cancer in asymptomatic subjects, from the general population. Eleven of 12 studies provided imaging protocols that included T1- and T2-weighted sequences, while only five included diffusion weighted imaging (DWI) of the whole body. Different categorical systems were used for the classification and the management of abnormal findings. Of 17,961 abnormal findings reported, 91% were benign, while 9% were oncologically relevant, requiring further investigations, and 0.5% of lesions were suspicious for cancer. A per-subject analysis showed that just 5% of subjects had no abnormal findings, while 95% had abnormal findings. Findings requiring further investigation were reported in 30% of all subjects, though in only 1.8% cancer was suspected. The overall rate of histologically confirmed cancer was 1.1%. CONCLUSION:WB-MRI studies of cancer screening in the asymptomatic general population are too heterogeneous to draw impactful conclusions regarding efficacy. A 5-point lesion scale based on the oncological relevance of findings appears the most appropriate for risk-based management stratification. WB-MRI examinations should be reported by experienced oncological radiologists versed on WB-MRI reading abnormalities and on onward referral pathways

    Tuberculosis incidence correlates with sunshine : an ecological 28-year time series study

    Get PDF
    Birmingham is the largest UK city after London, and central Birmingham has an annual tuberculosis incidence of 80 per 100,000. We examined seasonality and sunlight as drivers of tuberculosis incidence. Hours of sunshine are seasonal, sunshine exposure is necessary for the production of vitamin D by the body and vitamin D plays a role in the host response to tuberculosis. Methods: We performed an ecological study that examined tuberculosis incidence in Birmingham from Dec 1981 to Nov 2009, using publicly-available data from statutory tuberculosis notifications, and related this to the seasons and hours of sunshine (UK Meteorological Office data) using unmeasured component models. Results: There were 9,739 tuberculosis cases over the study period. There was strong evidence for seasonality, with notifications being 24.1% higher in summer than winter (p<0.001). Winter dips in sunshine correlated with peaks in tuberculosis incidence six months later (4.7% increase in incidence for each 100 hours decrease in sunshine, p<0.001). Discussion and Conclusion: A potential mechanism for these associations includes decreased vitamin D levels with consequent impaired host defence arising from reduced sunshine exposure in winter. This is the longest time series of any published study and our use of statutory notifications means this data is essentially complete. We cannot, however, exclude the possibility that another factor closely correlated with the seasons, other than sunshine, is responsible. Furthermore, exposure to sunlight depends not only on total hours of sunshine but also on multiple individual factors. Our results should therefore be considered hypothesis-generating. Confirmation of a potential causal relationship between winter vitamin D deficiency and summer peaks in tuberculosis incidence would require a randomized-controlled trial of the effect of vitamin D supplementation on future tuberculosis incidence

    MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings

    Get PDF
    Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up

    Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease.

    Get PDF
    Quantitative whole-body diffusion-weighted MRI (WB-DWI) is now possible using semi-automatic segmentation techniques. The method enables whole-body estimates of global Apparent Diffusion Coefficient (gADC) and total Diffusion Volume (tDV), both of which have demonstrated considerable utility for assessing treatment response in patients with bone metastases from primary prostate and breast cancers. Here we investigate the agreement (inter-observer repeatability) between two radiologists in their definition of Volumes Of Interest (VOIs) and subsequent assessment of tDV and gADC on an exploratory patient cohort of nine. Furthermore, each radiologist was asked to repeat his or her measurements on the same patient data sets one month later to identify the intra-observer repeatability of the technique. Using a Markov Chain Monte Carlo (MCMC) estimation method provided full posterior probabilities of repeatability measures along with maximum a-posteriori values and 95% confidence intervals. Our estimates of the inter-observer Intraclass Correlation Coefficient (ICCinter) for log-tDV and median gADC were 1.00 (0.97-1.00) and 0.99 (0.89-0.99) respectively, indicating excellent observer agreement for these metrics. Mean gADC values were found to have ICCinter = 0.97 (0.81-0.99) indicating a slight sensitivity to outliers in the derived distributions of gADC. Of the higher order gADC statistics, skewness was demonstrated to have good inter-user agreement with ICCinter = 0.99 (0.86-1.00), whereas gADC variance and kurtosis performed relatively poorly: 0.89 (0.39-0.97) and 0.96 (0.69-0.99) respectively. Estimates of intra-observer repeatability (ICCintra) demonstrated similar results: 0.99 (0.95-1.00) for log-tDV, 0.98 (0.89-0.99) and 0.97 (0.83-0.99) for median and mean gADC respectively, 0.64 (0.25-0.88) for gADC variance, 0.85 (0.57-0.95) for gADC skewness and 0.85 (0.57-0.95) for gADC kurtosis. Further investigation of two anomalous patient cases revealed that a very small proportion of voxels with outlying gADC values lead to instability in higher order gADC statistics. We therefore conclude that estimates of median/mean gADC and tumour volume demonstrate excellent inter- and intra-observer repeatability whilst higher order statistics of gADC should be used with caution when ascribing significance to clinical changes

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

    Full text link
    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation, and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte

    Splenectomy for solitary splenic metastasis of ovarian cancer

    Get PDF
    BACKGROUND: Splenic metastases occur in rare cases with a few case reports of patients in the literature. Generally, splenic metastases mean late dissemination of a disease. Solitary splenic metastases from solid tumors are extremely unusual. CASE PRESENTATION: We report a case of a patient with ovarian mucinous cystadenocarcinoma who underwent splenectomy for isolated parenchymal metastasis. CONCLUSION: Ovarian epithelial tumors comprised most of isolated splenic metastases from gynecologic tumor. When isolated splenic recurrence is suspected on image studies and serum tumor markers, intraabdominal gross findings should be examined to exclude peritoneal carcinomatosis. If only spleen was under suspicion of recurrence of ovarian cancer, splenectomy may play a therapeutic role

    Imaging Diagnosis and Follow-up of Advanced Prostate Cancer: Clinical Perspectives and State of the Art.

    Full text link
    The management of advanced prostate cancer has changed substantially with the availability of multiple effective novel treatments, which has led to improved disease survival. In the era of personalized cancer treatments, more precise imaging may help physicians deliver better care. More accurate local staging and earlier detection of metastatic disease, accurate identification of oligometastatic disease, and optimal assessment of treatment response are areas where modern imaging is rapidly evolving and expanding. Next-generation imaging modalities, including whole-body MRI and molecular imaging with combined PET and CT and combined PET and MRI using novel radiopharmaceuticals, create new opportunities for imaging to support and refine management pathways in patients with advanced prostate cancer. This article demonstrates the potential and challenges of applying next-generation imaging to deliver the clinical promise of treatment breakthroughs

    Parameter Estimation Error Dependency on the Acquisition Protocol in Diffusion Kurtosis Imaging

    Get PDF
    Mono-exponential kurtosis model is routinely fitted on diffusion weighted, magnetic resonance imaging data to describe non-Gaussian diffusion. Here, the purpose was to optimize acquisitions for this model to minimize the errors in estimating diffusion coefficient and kurtosis. Similar to a previous study, covariance matrix calculations were used, and coefficients of variation in estimating each parameter of this model were calculated. The acquisition parameter, b values, varied in discrete grids to find the optimum ones that minimize the coefficient of variation in estimating the two non-Gaussian parameters. Also, the effect of variation of the target values on the optimized values was investigated. Additionally, the results were benchmarked with Monte Carlo noise simulations. Simple correlations were found between the optimized b values and target values of diffusion and kurtosis. For small target values of the two parameters, there is higher chance of having significant errors; this is caused by maximum b value limits imposed by the scanner than the mathematical bounds. The results here, cover a wide range of parameters D and K so that they could be used in many directionally averaged diffusion weighted cases such as head and neck, prostate, etc
    • …
    corecore