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Abstract Mono-exponential kurtosis model is routinely fitted on diffusion weigh-

ted, magnetic resonance imaging data to describe non-Gaussian diffusion. Here, the

purpose was to optimize acquisitions for this model to minimize the errors in

estimating diffusion coefficient and kurtosis. Similar to a previous study, covariance

matrix calculations were used, and coefficients of variation in estimating each

parameter of this model were calculated. The acquisition parameter, b values, varied

in discrete grids to find the optimum ones that minimize the coefficient of variation

in estimating the two non-Gaussian parameters. Also, the effect of variation of the

target values on the optimized values was investigated. Additionally, the results

were benchmarked with Monte Carlo noise simulations. Simple correlations were

found between the optimized b values and target values of diffusion and kurtosis.

For small target values of the two parameters, there is higher chance of having

significant errors; this is caused by maximum b value limits imposed by the scanner

than the mathematical bounds. The results here, cover a wide range of parameters

D and K so that they could be used in many directionally averaged diffusion

weighted cases such as head and neck, prostate, etc.

1 Introduction

Quantitative diffusionMRI has proved useful in characterizing tumours in a number of

different cancers [1, 2], by estimating apparent diffusion coefficient of water

molecules assuming the diffusion is Gaussian inside the organ. However, the
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relationship between the signal (S) and acquisition b values is not generally Gaussian

because of compartmentalization, hindrance, and restriction effects on diffusion [3, 4],

or generally complexity of diffusion. As a result, an additional term kurtosis (K) is

added to the Gaussian model to describe this non-Gaussian behaviour [3, 4]:

S ¼ S0e
�bDþKb2D2

6 ; ð1Þ

whereD is themeasured diffusion coefficient and b or b value is the diffusion encoding

parameter (c2 d2 g2(D - d/3)), c is the gyromagnetic ratio, d is the length of the

diffusion gradient pulses, D is the time interval between the gradients, and g is the

amplitude of diffusion pulses [5]. The parameter kurtosis, K, is the normalized fourth

moment of P(r) (the probability density function describing displacement r) [3, 4]:

K ¼
R
r4PðrÞdr

R
r2PðrÞdr

� �2 � 3: ð2Þ

Recently, the description of Eq. (1) for diffusion has found applications in

imaging breast cancer [6], head and neck [7, 8], prostate [9], etc, because of better

description of complex non-Gaussian diffusion and also better fitting results [10].

However, for any organ, fitting errors should be considered more accurately. In

some cases, better fits does not mean that the model is better reflective of

biophysical changes to a certain disease, because there might be substantial fitting

errors associated with its parameters as will be shown in this study.

Kurtosismeasurements in diffusionweighted imaging aremade by acquiring images

at multiple different b values and fitting the model to these signals with a variety of

nonlinear least squares algorithms. Errors in measuring bothD and K will depend both

on noise in the signal and in the choice of b values. Previously, Fleysher et al. [11]

determined the acquisitions that minimized noise in mono-exponential measurements

with their results being applicable to selection of echo times in mono-exponential T2
relaxometry and selection of b values in mono-exponential apparent diffusion

coefficient (ADC) measurements. In a similar study, Gilani et al. [12] minimized the

noise in estimation of bi-exponential T2 measurements of the prostate cancer. In this

study, the work was extended to optimize mono-exponential kurtosis measurements.

2 Methods

All programs and numerical simulations were performed in MATLAB Release

2013b (The MathWorks, Inc., Natick, MA, US).

2.1 Covariance Matrix in General

The signal is measured for multiple b values and the model is fitted using a variety

of nonlinear, least squares fitting methods. The covariance matrix can be used to

calculate the sensitivity of parameter estimates to each independent variable (i.e.

b value) [12, 13]. Here, covariance matrix calculations were used to minimize errors

in estimating parameters of mono-exponential kurtosis model.
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In general, a function relating a set of measured signals, yi (i = 1, 2, …, m), to a

set of measurement parameters, xi (e.g. the b values) is given by

yi ¼ f ðxi; a1; a2; . . .; anÞ; ð3Þ

where aj (j = 1,2, …, n) are the parameters to be estimated (e.g. D, K, etc.).

The covariance matrix, Q, equals ðAT � AÞ�1
where A is an m 9 n matrix:

Aij ¼
1

r0

of

oa1
ja;x1 . . .

of

oan
ja;x1

..

. . .
. ..

.

of

oa1
ja;xm � � � of

oan
ja;xm

0

B
B
B
B
@

1

C
C
C
C
A
: ð4Þ

r0 is the acquisition noise which is assumed to be Gaussian, and equal for all

acquisitions. This assumption is valid provided r0 is less than about 0.25 (i.e. signal to
noise ratio (SNR) is greater than 4), at which point the Rician nature of the noise

becomes less apparent [14, 15]. For diffusion weighted imaging, SNR is usually

defined asmean of signal divided by its standard deviation at b value of 0. Each column

of A corresponds to one of the estimated parameters, and each row corresponds to a

single measurement. Thus, m must therefore be greater than or equal to n. Q, is an

n 9 n matrix and each diagonal element, Qii, is the variance of the corresponding

parameter ai [13]. The coefficient of variation (CoVi), is therefore given by

CoVi ¼
ffiffiffiffiffiffi
Qii

p

ai
: ð5Þ

The error in the ith parameter may be minimized by minimizing CoVi. Overall

error is minimized by minimizing the mean square error (MSE), the trace of Q.

2.2 Covariance Matrix of Kurtosis Model

For mono-exponential kurtosis, Eq. (1) could be rewritten with the style of Eq. (3)

as follows:

Si ¼ f ðbi; S0;D;KÞ; ð6Þ

where bi (i = 1,2,…,m) are the b values, Si(i = 1,2,…,m) are themeasured signals at

these b values, and S0,D andK are the three parameters to be estimated. Since there are

three parameters to be estimated at least three (bi, Si) acquisitions are required.

The m 9 3 matrix A for Eqs. (1) or (6) is:

A ¼ 1

r0

e�b1Dþ
b2
1
D2K

6 S0 �b1 þ 2
b21DK

6

� �

e�b1Dþ
b2
1
D2K

6 S0
b21D

2

6

� �

e�b1Dþ
b2
1
D2K

6

..

. ..
. ..

.

e�bmDþ
b2mD2K

6 S0 �bm þ 2
b2mDK

6

� �

e�bmDþ
b2mD2K

6 S0
b2mD

2

6

� �

e�bmDþ
b2mD2K

6

0

B
B
B
B
B
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@
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:

ð7Þ
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And finally, Q equals ðAT � AÞ�1
. In principle it might be possible to derive

Q analytically; however, this is not generally possible so that the calculations must

be performed numerically over a discrete grid of b values. It was possible to

organize the results based on encoding parameter bD meaning that the results are

not dependent on D values.

D and K has been, respectively, measured to be around 0.86 ± 0.37 lm2 ms-1

and 1.5 ± 0.43 for head and neck tumours [8], or 2.51 ± 0.37 lm2 ms-1 and

0.57 ± 0.07, for healthy prostate and 1.55 ± 0.45 lm2 ms-1 and 0.96 ± 0.24 for

cancerous prostate [9].

The optimization procedure could be performed to minimize errors in D alone,

K alone or both of these parameters. This would require to minimize the i’th

corresponding diagonal element of the covariance matrix, so that the coefficient of

variation in estimating that parameter (CoVi ¼
ffiffiffiffiffi
Qii

p
ai

) is minimized. If covariance

matrix is derived from matrix of Eq. (7) then the second diagonal element of the

covariance matrix corresponds to the variance in estimating parameter D and the

third corresponds to the variance in estimating parameter K. Here to optimize both

parameters K and D, the sum of CoV2 ? CoV3 was minimized.

2.3 Monte Carlo Verification

Monte Carlo simulations were used to confirm selected covariance matrix

variations. Mono-exponential kurtosis model (Eq. (1)) was simulated, and either

Rician or Gaussian noise (standard deviation 5 % of peak signal) was added.

Obviously, for the case of Gaussian noise, at each b value a random value should be

drawn from a Gaussian distribution with mean of zero and standard deviation

derived from S0/SNR [S0 defined in Eq. (1)]. However, for the case of Rician noise

signal at each b value is dependent on the acquired signal [14, 15]:

PðSnðbÞÞ ¼
SnðbÞ
r2

e�ðS2
n
ðbÞþS2ðbÞÞ=2r2 I0

SðbÞ � SnðbÞ
r2

� �

; ð8Þ

where S(b) is the signal without noise (i.e. Eq. (1)) and Sn(b) is the noisy signal at

each b value. Accordingly, the Rician noise was constructed using MATLAB’s

makedist program at each b value.

For both cases, after construction of noisy signal, a new mono-exponential

kurtosis model was then fitted to the noisy signals using MATLAB’s nonlinear least

squares curve fitting, lsqcurvefit. The procedure was repeated with 100,000 different

sets of noise and the CoV of each parameter estimate calculated. These calculations

were then repeated over the same n-dimensional grids of b values and optimized

b values were found. 100,000 different values of D, K were stored and were used to

calculate CoVD and CoVK.

It is noteworthy that the covariance matrix optimization results for bi-exponential

T2 imaging of the prostate, has already been verified by the Monte Carlo method in

Gilani et al. [12].
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2.4 Maximum b Values

It is obvious that greater b values tend to minimize the error in estimating kurtosis

parameter because the second term in the exponential (Kb2D2=6) which contains the

kurtosis parameter is multiplied by b2.

However, there are two maximum b value criteria. The first maximum b value

limit is imposed by the scanner noise considerations. The second maximum limit is

related to the fitting model. Jensen et al. [4]. calculated the maximum allowable

b value for the mono-exponential kurtosis model to be 3/DK.

3 Results

Table 1 summarizes the optimization results. The optimization is based on the

encoding parameter bD. As observed in the table, at least one maximum b value is

present in the optimized acquisitions.

To show the difference between the optimized results, the case of using equally

distanced b values between 0 to maximum was also tested as shown in Table 2.

Comparing Tables 1 and 2 it is clear that optimized b values considerably reduce

the estimation errors of D and K.

Table 1 Optimum b value acquisition strategy to minimize estimation error of D and K for N (3–5) b

value acquisitions, where ðbDÞmax ¼ 3=K is the maximum allowable acquisition point, CoVK , CoVD and

CoVS are the coefficients of variation, respectively, for K, D and S0

N (bD)1 (bD)2 (bD)3 (bD)4 (bD)5 (bD)max K CoVK CoVD CoVs

3 0 0.75 2 2 1.5 0.145 0.220 0.05

3 0 0.9 3 3 1 0.153 0.188 0.05

3 0 1 3.75 3.75 0.8 0.176 0.177 0.05

3 0 1 5 5 0.6 0.245 0.168 0.05

3 0 1.05 6 6 0.5 0.335 0.164 0.05

3 0 0.9 10 10 0.3 1.48 0.173 0.05

4 0 0.8 0.8 2 2 1.5 0.145 0.171 0.05

4 0 0.95 0.95 3 3 1 0.153 0.144 0.05

4 0 1 3.75 3.75 3.75 0.8 0.126 0.176 0.05

4 0 1.05 5 5 5 0.6 0.173 0.166 0.05

4 0 1.05 6 6 6 0.5 0.237 0.163 0.05

4 0 0.95 10 10 10 0.3 1.04 0.164 0.05

5 0 0.8 0.8 2 2 2 1.5 0.108 0.168 0.05

5 0 1 1 3 3 3 1 0.118 0.142 0.05

5 0 1.05 1.05 3.75 3.75 3.75 0.8 0.122 0.133 0.05

5 0 1.1 1.1 5 5 5 0.6 0.173 0.125 0.05

5 0 1.05 6 6 6 6 0.5 0.194 0.1618 0.05

5 0 1 10 10 10 10 0.3 0.857 0.161 0.05

SNR = 20
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To show a more tangible presentation of the optimization results, the values of

D and K were selected to be 0.86 ± 0.37 lm2 ms-1 and 1.5 ± 0.43 similar to the

values measured in head and neck tumour by Yuan et al. [8]. The optimization was

performed using these target values, and estimation errors were compared with

equally distanced acquisitions in Fig. 1 with varying D and K. In Fig. 1a, b, D was

assumed to be constant and K varied from 1 to 1.5. In Fig. 1c, d, K was assumed to

be constant and D varied from 0.35 to 0.85.

As observed in the four figures with increasing the number of b values above 5, it

is always better to optimize the acquisitions than to use equally distanced b value

acquisitions.

3.1 Monte Carlo Verification

This procedure was repeated for all the target values of D and K in Table 1. CoVD

and CoVK were found if Rician noises were present. Since here only SNR’s of 20

Table 2 Equally distanced b value acquisition strategy for N (3–5) b value acquisitions, where

ðbDÞmax ¼ 3=K is the maximum allowable acquisition point, CoVK , CoVD and CoVS are the coefficients

of variation, respectively, for K, D and S0

N (bD)1 (bD)2 (bD)3 (bD)4 (bD)5 (bD)max K CoVK CoVD CoVs

3 0 1 2 2 1.5 0.145 0.223 0.05

3 0 1.5 3 3 1 0.15 0.22 0.05

3 0 1.88 3.75 3.75 0.8 0.18 0.24 0.05

3 0 2.5 5 5 0.6 0.24 0.29 0.05

3 0 3 6 6 0.5 0.34 0.36 0.05

3 0 5 10 10 0.3 1.48 1.13 0.05

4 0 0.66 1.33 2 2 1.5 0.14 0.19 0.05

4 0 1 2 3 3 1 0.14 0.17 0.05

4 0 1.25 2.5 3.75 3.75 0.8 0.16 0.17 0.05

4 0 1.66 3.33 5 5 0.6 0.22 0.19 0.05

4 0 2 4 6 6 0.5 0.30 0.22 0.05

4 0 3.33 6.66 10 10 0.3 1.29 0.50 0.05

5 0 0.5 1 1.5 2 2 1.5 0.13 0.18 0.05

5 0 0.75 1.5 2.25 3 3 1 0.14 0.16 0.05

5 0 0.94 1.86 2.81 3.75 3.75 0.8 0.15 0.15 0.05

5 0 1.25 2.5 3.75 5 5 0.6 0.21 0.16 0.05

5 0 1.5 3 4.5 6 6 0.5 0.28 0.17 0.05

5 0 2.5 5 7.5 10 10 0.3 1.11 0.31 0.05

SNR = 20

cFig. 1 Changes in the coefficient of variation in estimating D and K (respectively, CoVD and CoVK) with
varying K and D for target values of head and neck tumours for 3–5 optimized or equally spaced
acquisitions. a K varies from 1 to 1.5 and CoVD is measured. b K varies from 1 to 1.5 and CoVK is
measured. c D varies from 0.3 to 0.85 and CoVD is measured. d D varies from 0.3 to 0.85 and CoVK is
measured
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were considered, there was a good agreement between the Rician Monte Carlo

simulations of noise and the results from covariance matrix calculations.

4 Discussion

It was shown that as the number of b value acquisitions increases, optimization

significantly reduces errors in measuring both diffusion and kurtosis. Although the

optimizations are dependent on both parameters D and K, for one example which

was the case of head and neck tumours, it was shown that the optimization works

well for a wide range of these parameters. However, in addition to the maximum

b value consideration regarding the kurtosis modelling, one should consider that if

the both parameter D and K are small, then the maximum b value criteria is imposed

by the maximum practical b values of the MR scanner. This means in many routine

applications the maximum b values that are used are smaller than the maximums of

Tables 1 or 2; hence there might be significant errors in estimating non-Gaussian

parameters. For a clinical diffusion kurtosis imaging example where D is

1 lm2 ms-1 and K is 0.6, if five values of 0, 1000, 1500, 2000 and 2500 s mm-2

are used, CoVD and CoVK are, respectively, about 0.21 and 0.75 assuming

SNR = 20.

There is an inverse relation between CoV’s derived in this study and SNR

(CoV / 1

SNR
). For example, if SNR is 30 instead of 20 then CoV’s derived here

should be multiplied by 0.66. Parameter estimations are also dependent on diffusion

echo time (TE) or signal fading due to T2 relaxation, similarly this can be accounted

for by considering CoV / 1
e�TE=T2

.

Optimization and noise considerations of MR relaxometry acquisitions from a

statistical point of view is not something new [16–21]. Gilani et al. [12] have

optimized bi-exponential T2 measurements of prostate cancer. Jambor et al. [20]

have optimized bi-exponential diffusion measurements of the prostate. Merisaari

et al. [18] have optimized mono-exponential, bi-exponential and kurtosis measure-

ments of the prostate, however, only for some random selections of b values instead

of searching over a grid of b values. Additionally, optimization of diffusion kurtosis

acquisitions has already been looked at in [22] calculating Cramér–Rao lower

bound. In this study, the optimization was performed over a wide range of kurtosis

values, applicable to diffusion kurtosis of many organs; also the whole allowable

grid of b values was searched. Hence, our text gives a more direct and simplified

assessment of nonlinear least squares curve fitting algorithm, which is routinely

used for relaxometry.

In most of these studies, the Monte Carlo method is used. Monte Carlo method

could directly assess the inherent fitting errors of any algorithm, and is relatively

more accurate because the simulated noise could have exact profile of the

acquisitions. For example, for diffusion weighted imaging with SNR’s of less than

4, the Rician nature of noise is more dominant and the Gaussian assumption is not

valid [14, 15]; however, even in Monte Carlo optimizations of diffusion, still a

Gaussian approximate of noise profile is used. This issue is not important for bigger
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region of interest (ROI) analysis because of significantly larger SNR’s, as a result,

the Gaussian estimate of noise which was used in our study is valid.

Also, the covariance matrix method for estimating errors is fast. For example, if

the number of b values is greater than 10, the optimization would be around 1 or 2 h

using this method, whereas a similar Monte Carlo optimization would be

significantly much more time consuming, and hence not feasible.

5 Conclusion

The results of this study prove that using b values of as high as possible would

significantly improve diffusion kurtosis imaging. However, there are two constraints

for this, first it is the interference from higher terms of diffusion, and the second one

is the noise limitations of the scanners at high b values.

Both covariance matrix calculations and Monte Carlo assessments of noise,

predict the accuracy of diffusion parameter estimations and this could be used to

optimize acquisitions. These might help in near optimal selection of b values, if

target values of diffusion parameters are known.
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