254 research outputs found

    Galactomannan testing of bronchoalveolar lavage fluid is useful for diagnosis of invasive pulmonary aspergillosis in hematology patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasive pulmonary aspergillosis (IPA) is a major cause of morbidity and mortality in patients with hematological malignancies in the setting of profound neutropenia and/or hematopoietic stem cell transplantation. Early diagnosis and therapy has been shown to improve outcomes, but reaching a definitive diagnosis quickly can be problematic. Recently, galactomannan testing of bronchoalveolar lavage (BAL) fluid has been investigated as a diagnostic test for IPA, but widespread experience and consensus on optical density (OD) cut-offs remain lacking.</p> <p>Methods</p> <p>We performed a prospective case-control study to determine an optimal BAL galactomannan OD cutoff for IPA in at-risk patients with hematological diagnoses. Cases were subjects with hematological diagnoses who met established definitions for proven or probable IPA. There were two control groups: subjects with hematological diagnoses who did not meet definitions for proven or probable IPA and subjects with non-hematological diagnoses who had no evidence of aspergillosis. Following bronchoscopy and BAL, galactomannan testing was performed using the Platelia <it>Aspergillus </it>seroassay in accordance with the manufacturer's instructions.</p> <p>Results</p> <p>There were 10 cases and 52 controls. Cases had higher BAL fluid galactomannan OD indices (median 4.1, range 1.1-7.7) compared with controls (median 0.3, range 0.1-1.1). ROC analysis demonstrated an optimum OD index cutoff of 1.1, with high specificity (98.1%) and sensitivity (100%) for diagnosing IPA.</p> <p>Conclusions</p> <p>Our results also support BAL galactomannan testing as a reasonably safe test with higher sensitivity compared to serum galactomannan testing in at-risk patients with hematological diseases. A higher OD cutoff is necessary to avoid over-diagnosis of IPA, and a standardized method of collection should be established before results can be compared between centers.</p

    Treatment outcome definitions in nontuberculous mycobacterial pulmonary disease: an NTM-NET consensus statement

    Get PDF
    Nontuberculous mycobacterial pulmonary diseases (NTM-PD) are increasingly recognised as opportunistic infections of humans. These chronic pulmonary infections have two main presentations. The first is a fibro-cavitary disease, that occurs in patients with pre-existing pulmonary diseases, such as chronic obstructive pulmonary disease, bronchiectasis, previous tuberculosis or other structural lung disease. The second presentation is a nodular- bronchiectatic disease of primarily the lingula and middle lobe that tends to affect a middle- aged and elderly female population [1]. Treatment of NTM-PD requires long-term administration of complex multidrug therapies that are species-specific. Currently recommended regimens are supported by a very limited evidence base [2, 3]. The increasing incidence of NTM-PD has sparked increased interest in performing prospective randomised clinical trials [4]. One of the drawbacks of the existing case series and clinical trials is that they have applied different outcome measures [5]. This hampers meta-analyses, which are important in these still understudied infectious diseases. To enhance the quality and interpretability of the results of future trials and retrospective cohort studies, we aimed to formulate clear and broadly acceptable outcome definitions for NTM-PD treatment

    Barriers and enablers to the implementation of the 6-PACK falls prevention program: A preimplementation study in hospitals participating in a cluster randomised controlled trial

    Get PDF
    Evidence for effective falls prevention interventions in acute wards is limited. One reason for this may be suboptimal program implementation. This study aimed to identify perceived barriers and enablers of the implementation of the 6-PACK falls prevention program to inform the implementation in a randomised controlled trial. Strategies to optimise successful implementation of 6-PACK were also sought. A mixed-methods approach was applied in 24 acute wards from 6 Australian hospitals. Participants were nurses working on participating wards and senior hospital staff including Nurse Unit Managers; senior physicians; Directors of Nursing; and senior personnel involved in quality and safety or falls prevention. Information on barriers and enablers of 6-PACK implementation was obtained through surveys, focus groups and interviews. Questions reflected the COM-B framework that includes three behaviour change constructs of: capability, opportunity and motivation. Focus group and interview data were analysed thematically, and survey data descriptively. The survey response rate was 60% (420/702), and 12 focus groups (n = 96 nurses) and 24 interviews with senior staff were conducted. Capability barriers included beliefs that falls could not be prevented; and limited knowledge on falls prevention in patients with complex care needs (e.g. cognitive impairment). Capability enablers included education and training, particularly face to face case study based approaches. Lack of resources was identified as an opportunity barrier. Leadership, champions and using data to drive practice change were recognised as opportunity enablers. Motivation barriers included complacency and lack of ownership in falls prevention efforts. Motivation enablers included senior staff articulating clear goals and a commitment to falls prevention; and use of reminders, audits and feedback. The information gained from this study suggests that regular practical face-to-face education and training for nurses; provision of equipment; audit, reminders and feedback; leadership and champions; and the provision of falls data is key to successful falls prevention program implementation in acute hospitals

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level

    Get PDF
    The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran

    Long-term effects of evolocumab in participants with HIV and dyslipidemia: results from the open-label extension period

    Get PDF
    Objectives: People with HIV (PWH) are at an increased risk of atherosclerotic cardiovascular disease. Suboptimal responses to statin therapy in PWH may result from antiretroviral therapies (ARTs). This open-label extension study aimed to evaluate the long-term safety and efficacy of evolocumab up to 52\u200aweeks in PWH. Design: This final analysis of a multinational, placebo-controlled, double-blind, randomized phase 3 trial evaluated the effect of monthly subcutaneous evolocumab 420\u200amg on low-density lipoprotein cholesterol (LDL-C) during the open-label period (OLP) following 24\u200aweeks of double-blind period in PWH with hypercholesterolemia/mixed dyslipidemia. All participants enrolled had elevated LDL-C or nonhigh-density lipoprotein cholesterol (non-HDL-C) and were on stable maximally tolerated statin and stable ART. Methods: Efficacy was assessed by percentage change from baseline in LDL-C, triglycerides, and atherogenic lipoproteins. Treatment-emergent adverse events (TEAEs) were examined. Results: Of the 467 participants randomized in the double-blind period, 451 (96.6%) received at least one dose of evolocumab during the OLP (mean age of 56.4\u200ayears, 82.5% male, mean duration with HIV of 17.4\u200ayears). By the end of the 52-week OLP, the overall mean (SD) percentage change in LDL-C from baseline was -57.8% (22.8%). Evolocumab also reduced triglycerides, atherogenic lipid parameters (non-HDL-C, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, and lipoprotein[a]), and increased HDL-C. TEAEs were similar between placebo and evolocumab during the OLP. Conclusion: Long-term administration of evolocumab lowered LDL-C and non-HDL-C, allowing more PWH to achieve recommended lipid goals with no serious adverse events. Trail registration: NCT02833844. Video abstract: http://links.lww.com/QAD/C441

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality: An Individual-Level Pooled Analysis of 30 Cohort Studies

    Get PDF
    BACKGROUND: Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies. METHODS: We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance–weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available). RESULTS: In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15 198 incident cardiovascular events occurred among 68 659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88–0.99), 0.78 (0.70–0.85), and 0.88 (0.79–0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88–1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86–0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships. CONCLUSIONS: In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184
    corecore