23 research outputs found

    Selective Translational Repression of Truncated Proteins from Frameshift Mutation-Derived mRNAs in Tumors

    Get PDF
    Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs). Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD) system. However, PTCs located within 50–55 nucleotides of the last exon–exon junction are not recognized by NMD (NMD-irrelevant), and some PTC-containing mRNAs can escape from the NMD system (NMD-escape). We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression

    Altered Cytochrome P450 Expression in Mice during Pregnancy

    No full text
    Human pregnancy is known to influence hepatic drug metabolism in a cytochrome (P450)-specific manner. However, the underlying mechanisms remain unknown, in part due to a lack of experimental models to study altered drug metabolism during pregnancy. In this study, we examined how pregnancy influences expression of major P450 isoforms in mice. Liver tissues were isolated from female FVB/N-mice at different gestational time points: prepregnancy, 7, 14, and 21 days of pregnancy, and 7 days postpartum. mRNA expression levels of major P450 isoforms (Cyp1a2, Cyp2a5, Cyp2b10, Cyp2c37, Cyp2d22, Cyp2e1, Cyp3a11, and Cyp3a41) in the liver tissues were determined by quantitative real-time polymerase chain reaction. Whereas Cyp2a5 expression was unchanged, Cyp3a41 expression was significantly increased during pregnancy. In contrast, expression of Cyp1a2, Cyp2c37, Cyp2d22, Cyp2e1, and Cyp3a11 was decreased. Expression of Cyp2d22 and Cyp2e1 isoforms correlated with that of peroxisome proliferator-activated receptor (PPAR)α in the mouse livers, suggesting potential involvement of PPARα in down-regulation of the P450 expression during pregnancy. Effects of pregnancy on expression of other P450 mouse isoforms as well as on in vivo drug disposition remain to be characterized. These results provide a guide for future studies on P450 regulation during pregnancy

    Altered Cytochrome P450 Expression in Mice during Pregnancy

    No full text
    Abstract Human pregnancy is known to influence hepatic drug metabolism in a CYP-specific manner. However, the underlying mechanisms remain unknown in part due to a lack of experimental models to study altered drug metabolism during pregnancy. In this study, we examined how pregnancy influences expression of major Cyp isoforms in mice. Liver tissues were isolated from female FVB/N mice at different gestational time points: pre-pregnancy, 7, 14 and 21 days of pregnancy, and 7 days post partum. mRNA expression levels of major Cyp isoforms (Cyp1a2, Cyp2a5, Cyp2b10, Cyp2c37, Cyp2d22, Cyp2e1, Cyp3a11, and Cyp3a41) in the liver tissues were determined by quantitative real-time PCR. While Cyp2a5 expression was unchanged, Cyp3a41 expression was significantly increased during pregnancy. In contrast, expression of Cyp1a2, Cyp2c37, Cyp2d22, Cyp2e1, and Cyp3a11 was all decreased. Expression of Cyp2d22 and Cyp2e1 isoforms correlated with that of PPARα in the mouse livers, suggesting potential involvement of PPARα in downregulation of the Cyp expression during pregnancy. Effects of pregnancy on expression of other Cyp mouse isoforms as well as on in vivo drug disposition remain to be characterized. These results provide a guide for future studies on CYP regulation during pregnancy

    17 β

    No full text

    Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice.

    No full text
    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic CYP2D6 in Tg-CYP2D6 mice. This study provides key insights into mechanisms underlying altered CYP2D6-mediated drug metabolism during pregnancy, laying a foundation for improved drug therapy in pregnant women

    Podocytes exhibit a specialized protein quality control employing derlin-2 in kidney disease

    No full text
    Podocytes are terminally differentiated cells of the kidney filtration barrier with a limited proliferative capacity and are the primary glomerular target for various sources of cellular stress. Accordingly, it is particularly important for podocytes to cope with stress efficiently to circumvent cell death and avoid compromising renal function. Improperly folded proteins within the endoplasmic reticulum (ER) are associated with increased cellular injury and cell death. To relieve ER stress, protein quality control mechanisms like ER-associated degradation (ERAD) are initiated. Derlin-2 is an important dislocation channel component in the ERAD pathway, having an indispensable role in clearing misfolded glycoproteins from the ER lumen. With studies linking ER stress to kidney disease, we investigated the role of derlin-2 in the susceptibility of podocytes to injury due to protein misfolding. We show that podocytes employ derlin-2 to mediate the ER quality control system to maintain cellular homeostasis in both mouse and human glomeruli. Patients with focal segmental glomerulosclerosis (FSGS) or diabetic nephropathy (DN) upregulate derlin-2 expression in response to glomerular injury, as do corresponding mouse models. In derlin-2-deficient podocytes, compensatory responses were lost under adriamycin (ADR)-induced ER dysfunction, and severe cellular injury ensued via a caspase-12-dependent pathway. Moreover, derlin-2 overexpression in vitro attenuated ADR-induced podocyte injury. Thus derlin-2 is part of a protein quality control mechanism that can rescue glomerular injury attributable to impaired protein folding pathways in the ER. Induction of derlin-2 expression in vivo may have applications in prevention and treatment of glomerular diseases
    corecore