130 research outputs found

    Differential expression and co-expression gene networks reveal candidate biomarkers of boar taint in non-castrated pigs

    Get PDF
    Abstract Boar taint (BT) is an offensive odour or taste observed in pork from a proportion of non-castrated male pigs. Surgical castration is effective in avoiding BT, but animal welfare issues have created an incentive for alternatives such as genomic selection. In order to find candidate biomarkers, gene expression profiles were analysed from tissues of non-castrated pigs grouped by their genetic merit of BT. Differential expression analysis revealed substantial changes with log-transformed fold changes of liver and testis from −3.39 to 2.96 and −7.51 to 3.53, respectively. Co-expression network analysis revealed one module with a correlation of −0.27 in liver and three modules with correlations of 0.31, −0.44 and −0.49 in testis. Differential expression and co-expression analysis revealed candidate biomarkers with varying biological functions: phase I (COQ3, COX6C, CYP2J2, CYP2B6, ACOX2) and phase II metabolism (GSTO1, GSR, FMO3) of skatole and androstenone in liver to steroidgenesis (HSD17B7, HSD17B8, CYP27A1), regulation of steroidgenesis (STARD10, CYB5R3) and GnRH signalling (MAPK3, MAP2K2, MAP3K2) in testis. Overrepresented pathways included “Ribosome”, “Protein export” and “Oxidative phosphorylation” in liver and “Steroid hormone biosynthesis” and “Gap junction” in testis. Future work should evaluate the biomarkers in large populations to ensure their usefulness in genomic selection programs

    Genetic Susceptibility Loci in Genomewide Association Study of Cluster Headache

    Get PDF
    Cefalea; Estudio de asociación del genoma completoCefalea; Estudi de l'associació del genoma completHeadache; Genomewide Association StudyObjective Identifying common genetic variants that confer genetic risk for cluster headache. Methods We conducted a case–control study in the Dutch Leiden University Cluster headache neuro-Analysis program (LUCA) study population (n = 840) and unselected controls from the Netherlands Epidemiology of Obesity Study (NEO; n = 1,457). Replication was performed in a Norwegian sample of 144 cases from the Trondheim Cluster headache sample and 1,800 controls from the Nord-Trøndelag Health Survey (HUNT). Gene set and tissue enrichment analyses, blood cell-derived RNA-sequencing of genes around the risk loci and linkage disequilibrium score regression were part of the downstream analyses. Results An association was found with cluster headache for 4 independent loci (r2 < 0.1) with genomewide significance (p < 5 × 10−8), rs11579212 (odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.33–1.72 near RP11-815 M8.1), rs6541998 (OR = 1.53, 95% CI = 1.37–1.74 near MERTK), rs10184573 (OR = 1.43, 95% CI = 1.26–1.61 near AC093590.1), and rs2499799 (OR = 0.62, 95% CI = 0.54–0.73 near UFL1/FHL5), collectively explaining 7.2% of the variance of cluster headache. SNPs rs11579212, rs10184573, and rs976357, as proxy SNP for rs2499799 (r2 = 1.0), replicated in the Norwegian sample (p < 0.05). Gene-based mapping yielded ASZ1 as possible fifth locus. RNA-sequencing indicated differential expression of POLR1B and TMEM87B in cluster headache patients. Interpretation This genomewide association study (GWAS) identified and replicated genetic risk loci for cluster headache with effect sizes larger than those typically seen in complex genetic disorders. ANN NEUROL 2021;90:203–21

    Migraine polygenic risk score associates with efficacy of migraine-specific drugs

    Get PDF
    Objective To assess whether the polygenic risk score (PRS) for migraine is associated with acute and/or prophylactic migraine treatment response. Methods We interviewed 2,219 unrelated patients at the Danish Headache Center using a semistructured interview to diagnose migraine and assess acute and prophylactic drug response. All patients were genotyped. A PRS was calculated with the linkage disequilibrium pred algorithm using summary statistics from the most recent migraine genome-wide association study comprising similar to 375,000 cases and controls. The PRS was scaled to a unit corresponding to a twofold increase in migraine risk, using 929 unrelated Danish controls as reference. The association of the PRS with treatment response was assessed by logistic regression, and the predictive power of the model by area under the curve using a case-control design with treatment response as outcome. Results A twofold increase in migraine risk associates with positive response to migraine-specific acute treatment (odds ratio [OR] = 1.25 [95% confidence interval (CI) = 1.05-1.49]). The association between migraine risk and migraine-specific acute treatment was replicated in an independent cohort consisting of 5,616 triptan users with prescription history (OR = 3.20 [95% CI = 1.26-8.14]). No association was found for acute treatment with non-migraine-specific weak analgesics and prophylactic treatment response. Conclusions The migraine PRS can significantly identify subgroups of patients with a higher-than-average likelihood of a positive response to triptans, which provides a first step toward genetics-based precision medicine in migraine.Peer reviewe

    Characterisation of tetanus monoclonal antibodies as a first step towards the development of an in vitro vaccine potency immunoassay

    Get PDF
    Batch release testing for human and veterinary tetanus vaccines still relies heavily on methods that involve animals, particularly for potency testing. The quantity and quality of tetanus antigen present in these products is of utmost importance for product safety and clinical effect. Immunochemical methods that measure consistency of antigen content and quality, potentially as an indicator of potency, could be a better choice and negate the need for an in vivo potency test. These immunochemical methods require at least one well characterised monoclonal antibody (mAb) that is specific for the target antigen. In this paper we report the results of the comprehensive characterisation of a panel of mAbs against tetanus with a view to select antibodies that can be used for development of an in vitro potency immunoassay. We have assessed binding of the antibodies to native antigen (toxin), detoxified antigen (toxoid), adsorbed antigen and heat-altered antigen. Antibody function was determined using an in-house cell-based neutralisation assay to support prior in vivo potency data that was available for some, but not all, of the antibodies. In addition, antibody affinity was measured, and epitope competition analysis was performed to identify pairs of antibodies that could be deployed in a sandwich immunoassay format. Not all characterisation tests provided evidence of “superiority” of one mAb over another, but together the results from all characterisation studies allowed for selection of an antibody pair to be taken forward to assay development

    Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals

    Get PDF
    <div><p>Background</p><p>Obesity is associated with severe co-morbidities such as type 2 diabetes and nonalcoholic steatohepatitis. However, studies have shown that 10–25 percent of the severely obese individuals are metabolically healthy. To date, the identification of genetic factors underlying the metabolically healthy obese (MHO) state is limited. Systems genetics approaches have led to the identification of genes and pathways in complex diseases. Here, we have used such approaches across tissues to detect genes and pathways involved in obesity-induced disease development.</p><p>Methods</p><p>Expression data of 60 severely obese individuals was accessible, of which 28 individuals were MHO and 32 were metabolically unhealthy obese (MUO). A whole genome expression profile of four tissues was available: liver, muscle, subcutaneous adipose tissue and visceral adipose tissue. Using insulin-related genes, we used the weighted gene co-expression network analysis (WGCNA) method to build within- and inter-tissue gene networks. We identified genes that were differentially connected between MHO and MUO individuals, which were further investigated by homing in on the modules they were active in. To identify potentially causal genes, we integrated genomic and transcriptomic data using an eQTL mapping approach.</p><p>Results</p><p>Both <i>IL-6</i> and <i>IL1B</i> were identified as highly differentially co-expressed genes across tissues between MHO and MUO individuals, showing their potential role in obesity-induced disease development. WGCNA showed that those genes were clustering together within tissues, and further analysis showed different co-expression patterns between MHO and MUO subnetworks. A potential causal role for metabolic differences under similar obesity state was detected for <i>PTPRE</i>, <i>IL-6R</i> and <i>SLC6A5</i>.</p><p>Conclusions</p><p>We used a novel integrative approach by integration of co-expression networks across tissues to elucidate genetic factors related to obesity-induced metabolic disease development. The identified genes and their interactions give more insight into the genetic architecture of obesity and the association with co-morbidities.</p></div

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients
    corecore