4,137 research outputs found

    Why national health research systems matter

    Get PDF
    Some of the most outstanding problems in Computer Science (e.g. access to heterogeneous information sources, use of different e-commerce standards, ontology translation, etc.) are often approached through the identification of ontology mappings. A manual mapping generation slows down, or even makes unfeasible, the solution of particular cases of the aforementioned problems via ontology mappings. Some algorithms and formal models for partial tasks of automatic generation of mappings have been proposed. However, an integrated system to solve this problem is still missing. In this paper, we present AMON, a platform for automatic ontology mapping generation. First of all, we show the general structure. Then, we describe the current version of the system, including the ontology in which it is based, the similarity measures that it uses, the access to external sources, etc

    Compact QED3 with theta term and axionic confining strings

    Full text link
    We discuss three dimensional compact QED with a theta term due to an axionic field. The variational gauge invariant functional is considered and it is shown that the ground state energy is independent of theta in a leading approximation. The mass gap of the axionic field is found to be dependent upon theta, the mass gap of the photon field and the scalar potential. The vacuum expectation of the Wilson loop is shown to be independent of theta in a leading approximation, to obey the area law and to lead to confinement. We also briefly discuss the properties of axionic confining strings.Comment: 35 pages, LaTex, typing error correcte

    Comptonization signatures in the rapid aperiodic variability of Galactic black-hole candidates

    Get PDF
    We investigate the effect of inverse-Compton scattering of flares of soft radiation in different geometries of a hot, Comptonizing region and a colder accretion disk around a solar-mass black hole. The photon-energy dependent light curves, their Fourier transforms, power spectra and Fourier-period dependent time lags of hard photons with respect to softer photons are discussed. On the basis of a comparison with existing data we find arguments against Comptonization of external soft radiation as well as Comptonization in a homogeneous medium as dominant mechanisms for the rapid aperiodic variability in Galactic black-hole candidates. Possible further observational tests for the influence of Comptonization on the rapid aperiodic variability of Galactic black-hole candidates are suggested.Comment: 32 pages, including 10 figures and 2 tables; uses epsf.sty, rotate.sty; submitted to Ap

    Ferromagnetic transition in a double-exchange system containing impurities in the Dynamical Mean Field Approximation

    Full text link
    We formulate the Dynamical Mean Field Approximation equations for the double-exchange system with quenched disorder for arbitrary relation between Hund exchange coupling and electron band width. Close to the ferromagnetic-paramagnetic transition point the DMFA equations can be reduced to the ordinary mean field equation of Curie-Weiss type. We solve the equation to find the transition temperature and present the magnetic phase diagram of the system.Comment: 5 pages, latex, 2 eps figures. We explicitely present the magnetic phase diagram of the syste

    Receptivity of Flat-Plate Boundary Layer in a Non-Uniform Free Stream (Vorticity Normal to the Plate)

    Get PDF
    Work is devoted to study of free-stream vorticity normal to leading edge interaction with boundary layer over plate and resulting flow distortion influence on laminar-turbulent transition. In experiments made the wake behind the vertically stretched wire was used as a source of vortical disturbances and its effect on the boundary layer over the horizontally mounted plate with various leading edge shapes was investigated. The purpose of experiments was to check the predictions of theoretical works of M.E. Goldstein, et. al. This theory shows that small free-stream inhomogeneity interacting with leading edge produces considerable distortion of boundary layer flow. In general, results obtained confirms predictions of Goldstein's theory, i.e., the amplification of steady vortical disturbances in boundary layer caused by vortex lines stretching was observed. Experimental results fully coincide with predictions of theory for large Reynolds number, relatively sharp leading edge and small disturbances. For large enough disturbances the flow distortion caused by symmetric wake unexpectedly becomes antisymmetric in spanwise direction. If the leading edge is too blunt the maximal distortion takes place immediately at the nose and no further amplification was observed. All these conditions and results are beyond the scope of Goldstein's theory

    Dynamic correlation functions and Boltzmann Langevin approach for driven one dimensional lattice gas

    Get PDF
    We study the dynamics of the totally asymmetric exclusion process with open boundaries by phenomenological theories complemented by extensive Monte-Carlo simulations. Upon combining domain wall theory with a kinetic approach known as Boltzmann-Langevin theory we are able to give a complete qualitative picture of the dynamics in the low and high density regime and at the corresponding phase boundary. At the coexistence line between high and low density phases we observe a time scale separation between local density fluctuations and collective domain wall motion, which are well accounted for by the Boltzmann-Langevin and domain wall theory, respectively. We present Monte-Carlo data for the correlation functions and power spectra in the full parameter range of the model.Comment: 10 pages, 9 figure

    The Hopf Skyrmion in QCD with Adjoint Quarks

    Full text link
    We consider a modification of QCD in which conventional fundamental quarks are replaced by Weyl fermions in the adjoint representation of the color SU(N). In the case of two flavors the low-energy chiral Lagrangian is that of the Skyrme-Faddeev model. The latter supports topologically stable solitons with mass scaling as N^2. Topological stability is due to the existence of a nontrivial Hopf invariant in the Skyrme-Faddeev model. Our task is to identify, at the level of the fundamental theory, adjoint QCD, an underlying reason responsible for the stability of the corresponding hadrons. We argue that all "normal" mesons and baryons, with mass O(N^0), are characterized by (-1)^Q (-1)^F =1, where Q is a conserved charge corresponding to the unbroken U(1) surviving in the process of the chiral symmetry breaking (SU(2) \to U(1) for two adjoint flavors). Moreover, F is the fermion number (defined mod 2 in the case at hand). We argue that there exist exotic hadrons with mass O(N^2) and (-1)^Q (-1)^F = -1. They are in one-to-one correspondence with the Hopf Skyrmions. The transition from nonexotic to exotic hadrons is due to a shift in F, namely F \to F - {\cal H} where {\cal H} is the Hopf invariant. To detect this phenomenon we have to extend the Skyrme-Faddeev model by introducing fermions.Comment: 18 pages, 3 figures; v.2: a reference and a comment added; v.3: two comments added, figures improve

    Infrared afterglow of GRB041219 as a result of reradiation on dust in a circumstellar cloud

    Full text link
    Observations of gamma ray bursts (GRB) afterglows in different spectral bands provide a most valuable information about their nature, as well as about properties of surrounding medium. Powerful infrared afterglow was observed from the strong GRB041219. Here we explain the observed IR afterglow in the model of a dust reradiation of the main GRB signal in the envelope surrounding the GRB source. In this model we do not expect appearance of the prompt optical emission which should be absorbed in the dust envelope. We estimate the collimation angle of the gamma ray emission, and obtain restrictions on the redshift (distance to GRB source), by fitting the model parameters to the observational data.Comment: 6 pages, 2 figures, Submited to Astrofizik

    Dissipation and coherent effects in narrow superconducting channels

    Get PDF
    We apply the time dependent Ginzburg-Landau equations (TDGL) to study small ac currents of frequency ω\omega in superconducting channels narrow on the scale of London penetration depth. We show that TDGL have tt-dependent and spatially uniform solutions that describe the order parameter with an oscillating part of the double frequency coexisting with an ac electric field. We evaluate the Ohmic losses (related neither to the flux flow nor to the phase slips) and show that the resistivity reduction on cooling through the critical temperature TcT_c should behave as (Tc−T)2/ω2(T_c-T)^2/\omega^2. If the channel is cut out of an anisotropic material in a direction other than the principal axes, the transverse phase difference and the Josephson voltage between the channel sides are generated.Comment: 5 pages, 1 figures, Accepted for publication in Phys. Rev.
    • …
    corecore