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Abstract

The reported work is devoted to study of free-stream vorticity normal

to leading edge interaction with boundary layer over plate and resulting
flow distortion influence on laminar-turbulent transition. In experiments

made the wake behind the Vertically stretched wire was used as a source of

vortical disturbances and it's effect on the boundary layer over the horison-

tally mounted plate with various leading edge shapes was investigated. The
purpose of experiments was to check the predictions of theoretical works of

M.E. Goldstein et. al. [4-6]. This theory shows that small free-stream inho-
mogeneity interacting with leading edge produces considerable distortion

of boundary layer flow. In general, results obtained confirms predictions of
Goldstein's theory, i.e. the amplification of steady vortical disturbances in

boundary layer caused by vortex lines streaching was observed. However,

experimental results fully coincides with predictions of theory for large

Reynolds number, relatively sharp leading edge and small disturbances.
For large enough disturbances the flow distortion caused by symmetric

wake unexpectedly becomes antisymmetric in spanwise direction. If the
leading edge is too blunt (semicircular) the maximal distortion takes place

immediately at the nose and no further amplification was observed. All
these conditions and results are beyond the scope of Goldstein's theory.

Another surprising result is the absence of laminar-turbulent transition in
the boundary layer strongly distorted by wake. Theory of spanwise mod-

ulated flow stability developed in theoretical part of report explains this
effect.

1. Introduction

Recent progress in both the linear and nonlinear aspects of stability theory has

highlighted the importance of receptivity problem [1]. One of the most unclear

part of receptivity studies is the receptivity of boundary-layer flow to vortical

disturbances. Some experimental [2] and theoretical [3] results permits to propose

that quasi-steady outer-flow vortical disturbances may trigger by-pass transition.

For this reason the experimental and theoretical study of vortex-boundary layer

interaction is an actual task. In present work such interaction is investigated for

the vorticity normal to the leading edge. The interest to this t_,pe of vortical

disturbances arises from the theoretical works of M.E. Goldstein et. al. [4-6],

where it was shown that small sinusoidal variation of upstream velocity along

the spanwise direction can produce significant variations in the boundary-layer

profile.

In experimental part of this work (section 2) such non-uniform flow interaction

with boundary layer over flat plate with nose of various shape was investigated.

The non-uniform flow was produced by laminar wake behind the wire placed

normal to the plate upstream of the leading edge. Theoretical part of the work



(section3) is devotedto stability study of boundarylayerflow with spanwise
modulatedvelocityprofilesimilar to that producedby outer-flowvorticity.

2. Experimental study of wake-boundary layer interaction

for different leading edge shapes

2.1. Experimental setup and equipment

The experiment was performed in a low-turbulence direct-flow wind tunnel T-36

I of Central Aerohydrodynamics institute (TsAGI). The test section is 2.6 m

long, 0.5 m wide an d 0.35 m high, and is preceded by 18:1 contraction. The
free-stream turbulence level in the test section is 0.06%, measured in the band

5-1500 Hz at velocities grater then 5m/s. Wind tunnel and flow characteristics

in test section are described in more details in previous report.

The general outline of experimental setup is shown in Figure 1 a. Interaction

of wake from vertically stretched wire with the boundar F layer over the horizon-

tally mounted plate was studied. Two plates with semi-elliptical leading edges of

aspect ratious 4:1 and 1:1 were used. These plates of 1810 mm long, 500 mrn wide

and 20 mm thick were made from Plexiglas and had drains for static pressure

distribution measurements. To control the stagnation point position over nose

two flaps mounted above the plate near its trailing edge were used. The wire

was stretched at the holder moving horizontally with steps 0.1 ram. Stream-

wise velocity component in boundary layer was measured with a DISA 55M01

anemometer and a single hot wire probe made of a gold plated tungsten with

a wire diameter 5#m and a sensitive length of 1 ram. The probe was mounted

on a carriage and was transversed in streamwise and vertical directions. The

accuracy of probe movement in vertical direction was 0.1 ram. Instead of probe

movement in spanwise direction the horizontal transmission of the wire was used.

Coordinate system and general designations used are shown in Figure 1 b, c.

2.2. Undisturbed flow characteristics

Interaction of wake with boundary layer over flat plate was studied for two semi-

elliptical leading edges with aspect ratious 4:1 and 1:1 and two free stream veloc-

ities 5 m/s and 17 m/s. So "blunt" plate nose forms were chosen to attain more

strong and distinct wake/boundary layer interaction effects. For relatively sharp

leading edge 4:1 the nearly symmetrical flow over the nose was reached. This is il-

lustrated by Figure 2 a where the velocity distribution over upper and lower sides

of nose computed from static pressure measured is shown. For symmetric flow

over blunt semicircular nose with aspect ratio 1:1, the local separation bubble

located near nose-plate mating occurs. To eliminate the separation bubble the

attachment line was moved to upper part of nose and flow becomes substantially

asymmetric. The velocity distribution over nose in this case is shown in Figure



2 b. From this figure one can see that velocities in first two points on the upper

surface are approximately the same, especially for uoo = 5m/s. So, stagnation

point is located between two first drains i.e. at y between 2 and 4 ram. Special

efforts were made to achieve the similar flow over the leading edge for two free

stream velocities 5 and 17 m/s. Figure 2 demonstrates satisfactory coincidence

of nondimensional velocity distributions measured at these two flow velocities for

both leading edges. On working upper surface the difference between them is less
then 5%.

Velocity distributions along the plane parts of models, measured for u_ =

5m/s by hot wire probe outside the boundary layer (at y = 40ram) are plotted

in Figure 3. Similar results for u_ = 17m/s are not shown because they coin-

cides with data for uoo = 5m/s within the accuracy of measurements (,-_ 0.3%).

For sharp nose (1:4) there exist a slight negative pressure gradient along x and

pressure gradient is slightly positive for blunt nose (1:1). All these gradient are

verb" small with velocity varies by 1% over the length of 1 m.

Velocity profiles in the boundary layer at different distances x from the lead-

ing edge for all combinations of uoo and nose shapes are shown in Figures 4-7

(see captions for these figures). Near the leading edge (x = 20 and 40 ram)

the profiles have maxima at the joint of boundary layer and inviscid flow. The

velocity at these maxima (shown by open symbols in figure 2) closely coincides

with velocity obtained from static pressure measurements. Far from leading edge

velocity profiles tends to Blasius profile for flat-plate boundary layer.

For the plate with sharp nose (1:4) the velocity pulsations in the boundary

layer were less then 0.1% uoo over all plate length for both free stream velocities.

The similar velocity pulsations level was observed in the boundary layer at the

plate with blunt nose (1:1) for uoo = 5m/s. At these regimes the boundary

layer flow was fully laminar. Laminar -turbulent transition occurs in a boundary

layer over the blunt nose plate at uoo = 17m/s. This is illustrated by Figure 8,

where the z-distribution of mean flow velocity _ = u/uoo and r.m.s, pulsations

_' = u'/uo¢ measured at fixed y = 0.3ram are shown. For this flow configuration

the boundary layer remains laminar till x = 200ram and transition occurs at

z --_ 450ram. Two factors may cause the transition: positive pressure gradient

and amplification of outer flow pulsations at the blunt nose.

2.3. Wake-boundary layer interaction

As was mentioned above, the purpose of reported work is investigation of laminar

wake interaction with flat plate boundary layer. It's well known that steady

laminar flow in the wake behind a cylinder exists if Reynolds number Rd = uood/v

is less then 40-50 [8]. Unfortunately, the laminar wakes are too narrow for well-

measured velocity deficit values. So, it is difficult to meet the conditions of

Goldstein's theoretical scheme, where the wake width 2L should be many times

higher then boundary layer thickness. Moreover, the Reynolds number associated
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with laminarWakea = 2uoL/u ,,. Rd is small with respect to Reynolds number of

typical outer flow disturbances _ = 70 in Kendall's experiment [9] (see also [6]).

In order to enhance the wake Reynolds number in experiment, the wake behind

a wire in regime of Karman vortex sheet was used. Up to Rd ----200 this vortex

sheet remains two-dimensional [8]. This sheet decays gradually with distance

and for z .2_100d it becomes indistinguishable from background pulsations in the

wake [8]. Pulsations in such decayed Karman vortex sheet are about 1/20 of it's

velocity deficit. It is more then in laminar wake, but it is sufficiently less then in

turbulent one.

In the reported work three wakes were used as a sources of upstream flow

inhomogeneity. One of them is steady laminar wake behind a wire of d = 0.09 mm

in a flow with uo¢ = 5m/s. The Reynolds number of this wake is Rd = 31 and

velocity pulsations within it are the same as in the free stream. Two other

wakes are the decayed Karman sheets with Rd _ 100: the wake behind a wire

of d = 0.09 mm in a flow with uoo = 17m/s and a wake produced by wire of

d = 0.3 mm in a flow with uoo = 5rn/s. Velocity deficits _oo = Uo/Uo_, half-widths

L, and maximal over z pulsations in these two wakes as functions of distance

from wire are plotted in Figures 9 and I0 respectively. Characteristics of steady

laminar wake are well described theoretically as

u-T= A= VRT B=TVT

where C_ is drag coefficient of the wire. From experimental data it was found
that B = 1.35.

Interaction of these three wakes with the boundary layer over the plate with

two noses were studied for different distances from wire to leading edge. All

flow configurations (diameter of wire, velocity, distance from wire to the leading

edge, shape of the leading edge) tested and characteristics of wakes at the leading

edge locations in these configurations are listed in the Table. Interacting with

leading edge, the wake produces two types of flow distortion in boundary layer.

Symmetric distortion generally observed if the wake is sufficiently weak. An

example of such distortion observed in flow configuration 3 is presented in Figure

11. This figure shows the spanwise distributions of mean velocity in boundary

layer _ = u/u_¢ measured at different distances from the leading edge. The
distance from the wall where these distributions were measured varies with z and

corresponds to _ .-. 0.5. When the wire was moved toward the leading edge at

x_ = 40mm (configuration 1 in Table), the flow distortion in boundary layer
becomes antisymmetric. This is demonstrated in Figure 12, where the similar

velocity profiles for this flow configuration are plotted. There are two possible

antisymmetric regimes: the "left" regime with maximum of velocity at the left

side and the right one with maximum at the right side. Both of these regimes

were observed and they change each other randomly when the wind tunnel was
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stoppedand started again. An attempt to fix the flow distortion orientation

by means of getting wire out of blunt by about 50 was unsuccessful because of

both "left" and "right" regimes were observed with non-vertical wire too. The

only effect of wire inclination was slight loss of left-right symmetry with one

of regimes ("left" or "right") becomes more pronounced. For definiteness, in

all Figures dealing with antisymmetric flow distortion the left regime is shown.

Transformation of outer symmetric wake flow into the antisymmetric flow in

the boundary layer is illustrated by Figure 13 where the streamwise velocity

distribution measured in section z = 150ram in configuration 1 is shown. The

gradual transition of antisymmetric regime into symmetric with z_ growth is

demonstrated by Figurel4 showing the velocity profiles in section z = 150ram

for z_ = 40, 150 and 250ram.

To explain a phenomenon of antisymmetric regime formation let's consider

a conceptual scheme of wake-leading edge interaction shown in Figure 15. The

wake may be considered as a pair of counterrotational vortex sheets. Stretching

of these sheets vortex lines around the nose produce a pair of counterrotational

streamwise vortices at the plate surface. The streamwise vorticity leads to a

perturbation of the streamwise boundary layer velocity. In symmetric regime,

the lifting of fluid between the vortices causes the diminishing of the streamwise

velocity, whereas at the periphery of them the downwards outer flow leads to

growth in the boundary layer velocity. The local maximum of velocity in the

middle of the wake in this regime may be caused by small-size secondary vortices

originating between the main vortices as shown in Figure 15 b.

It's well known that a pair of counterrotationa! streamwise vortices in a free

stream exhibits the so-called Crow instability [7]. This instability manifests in

twisting of vortices in a spiral manner. If similar type of instability exists for near-

wall vortices it will lead to lifting of one vortex as shown in Figure 15 c. The

remaining vortex will produce an antisymmetric flow distortion in the boundary

layer. If the symmetric regime is stable it is the only possible solution of wake-

boundary layer interaction problem. When it becomes unstable, the bifurcation

of solution occurs and new stable antisymmetric solution observed in experiment

appears. Contrary to unbounded stream where the Crow instability occurs for all

vortex strengths, the wall should stabilize the vortex pair. The instability should

occur only if the vortices are strong enough to lift each other. In accordance

with rapid distortion theory, the streamwise vorticity is proportional to initial

vertical vorticity in the wake which may be estimated as uo/L. The instability

should exist if this vorticity is large with respect to some characteristic velocity

gradient in a flow around the nose. If we suppose the inviscid nature of instability,

this gradient should be uoo/D, and the non-dimensional stability criterion K =

D__ can be constructed. If the instability related with vortices/boundary layer
L u¢¢

interaction is expected, the vorticity should be related to velocity gradient in

boundary layer over nose. In this case, the stability criterion becomes K_ =



/ _I/2
m_L,_, where 5 = _-) is the boundary layer thickness in the stagnation point
and r - the radius of the nose. Both criteria for all configurations tested are

given in Table. Comparison of two criteria shows that transition of a symmetric

flow into antisymmetric one some better correlates with inviscid criterion K.

Boundary layer flow is symmetric for K _< i and becomes antisymmetric for

K _> 2. Symmetric distortion occurs when K >_ 2 in configurations 7 and 8

only. For these flow configurations the wake width is approximately equal to

boundary layer thickness and wake-boundary layer interaction is fully viscous.

In any case this correlation shows the significant role of inviscid processes in

symmetry/antisymmetry transformation.

There are many parameters effecting on wake-boundary layer interaction.

Three of them describing the ongoing wake Rd , K and K_ were already in-

troduced. Another significant parameter responsible to relative boundary layer

thickness is unit Reynolds number RI = u_l/v. To simplify the analysis of

these parameters influence on phenomenon under consideration, let's introduce

the amplification coefficient describing the boundary layer flow response to ini-

tial vortical disturbances. This coefficient r is the ratio of boundary layer flow

distortion Aub at a given section x and the velocity deficit in ongoing wake near

the leading edge u0z_, that is r = Aub/uol,. The distortion Aub is determined as a

difference between the maximum and minimum of velocity distribution over span

measured for y corresponding to _ -_ 0.5-0.7. Distortion determined by this way

is close to it's maximum over section x = const. The amplification coefficients

as functions of x computed for different flow configurations are shown in Figure

16. From these results one can see, that the influence of unit Reynolds num-

ber on amplification coefficient is considerably stronger then the effect of other

factors. For large unit Reynolds number regimes 1,3,9,10,11 with u_ = 17m/s

and R1 = 1.17- 106 the amplification coefficients are an order of 10, whereas for

regimes 4,5,8 with u_ = 5rn/s and R1 = 3.45- l0 s this coefficient is not larger
then 2.

The second in significance factor is the shape of nose, with amplification co-

efficients for blunt nose (1:1) is an approximately two times grater then for sharp

nose (1:4). At the plate with blunt nose the maximal flow distortion is reached
immediately at the leading edge and perturbations decays rapidly with x. For

the sharp 1:4 nose the flow distortion reaches it's maximum atthe noticeable

distance x ,-_ 100- 150mm from leading edge. It is interesting to note, that anti-

symmetric disturbances (configurations 1, 4) decay more slowly then symmetric

ones (configurations 3, 5,8).

Maximal over z velocity pulsations in boundary layer distorted by wake mea-

sured at y corresponding to _ = 0.5 - 0.7 for some of configurations tested are

shown in Figure 17. Laminar-turbulent transition occurred only over plate with

1:1 nose at u_ = 17m/s (configurations 9,10,11). In these configurations the

extremely large pulsations u' ,-_ 6 - 10% were observed at the first near-nose



sectionx = 20mm. It is not surprising, that such high pulsations trigger the

laminar-turbulent transition at small distance ,-_ 150-250ram from leading edge.

Unfortunately, for these flow configurations (9,10,11 ) the wake-boundary layer in-

teraction can not be considered as laminar, i.e. the effect of pulsations on mean

flow development is significant over whole plate surface. The possible reason of

pulsations origination near leading edge may be local flow separation provocated

by wake. Really, the flow distortion in section x = 20mm for configurations 9

and 11 is very strong (see Figures 18 a and 19 a) and they may correspond to

separated flow in boundary layer. For all other configurations the pulsations level

did not exceeds 2% of outer flow velocity at least for x < 700ram. Such small

pulsations could not have any influence on steady flow distortion development,

so wake-boundary layer interaction may be considered as fully laminar. It's in-

teresting to note, that remarkable flow distortion in boundary layer observed

in configurations 1-3 (Aub/uoo '_ 0.3 - 0.4) did not lead to flow turbulization.

Possible explanations of this phenomenon see in section 3.

Figure 18 shows the spanwise distributions of _ measured at x = 20 or 40

and 150 in flow configurations 9, 1, and 4 where antisymmetric distortion were

observed. The shapes of this distributions are almost the same and does not

depends on nose shape, R1, Rd and other parameters. Similar distributions for

configurations 11, 3, 5 and 8 with symmetric flow distortion are shown in Figure
19. Two distinct types of velocity distribution are seen in this Figure. Profiles of

first type with maximum at the centre were observed under high unit Reynolds

number (configurations 3 and 11). If the unit Reynolds number is small (config-

urations 5 and 8) this maximum disappeared. The central maximum in low unit

Reynolds number flows appears only in velocity profiles measured close to the

wall. Such profiles may be found in figure 20 showing the velocity distribution

at z = 100 mm for flow configuration 5.

Distributions of boundary layer flow distortion Aub over y measured in section

z = 150ram in flow configuration land in section x = 100mm in flow configura-

tions 5 and 8 are plotted in Figure 21. For convenience, this distortions are nor-

malized by their values in outer flow measured at y = 40ram (deficit of the wake

u0) and vertical coordinate is referred to undisturbed boundary layer displace-
ment thickness _'. For comparison , the profile of velocity pulsations measured

in boundary layer under enhanced outer flow turbulence level by Kendall [9] is

plotted in this figure too. Results of [9] were normalized to fit maxima of pulsa-

tions and flow distortion in configuration 1. Figure 21 shows good coincidence of

flow distortion profile measured in antisymmetric regime for high unit Reynolds

number configuration 1 with profile of pulsations in [9]. Similar coincidence also

was demonstrated for symmetric flow distortion computed in frame of Goldstein's

theory [6]. So, one may suppose that both symmetric and antisymmetric regimes

of flow distortion take place when free-stream turbulence interacts with leading

edge.



3. Stability of boundary layer with steady inhomogeneity

of velocity profile

In this section the stability of boundary layer flow with steady spanwise mod-

ulation of velocity profile is studied theoretically. Such modulation is a model

of a streaky structure originating in the boundary layer subjected to free-stream

turbulence. The non-uniform flow in boundary layer produced by wake is another

example of modulated flow. It's well-known that transition is not caused directly

by steady flow distortion, but it's initiated by the growth of high-frequency travel-

ling waves. For this reason, the stability studies of modulated flows are necessary

for understanding of transition caused by outer flow turbulence. In contrast to

generalized Rayleigh's equation approach used in [6], the stability analysis is

based on more general linearized Navier-Stokes equations.

3.1. Problem formulation

Consider the stability of boundary layer ftow with steady variations of velocity

profile in spanwise direction. We'll use the coordinate system introduced in sec-

tion 2 with lengths scaled with averaged over span boundary layer displacement

thickness 5". Basic flow V0(y, z) is considered to be spanwise-periodic with pe-

riod Tz and homogeneous in streamwise direction. We present this flow in form
of Fourier series

N

Vo = {go(y),0,0} + v, v; = E v0 e
,_=-g (3.1)

Vi = {ui, vi, wi}

where Uo(y) - Blasius flow profile, Vi - flow inhomogeneity, B = 2rr/T_.

There are two general types of unstable disturbances in periodic flows: the

disturbances of the same period as the basic flow (fundamental disturbances) and

subharmonic ones. Disturbances of both types will be sought in common form

Vp= [_'_=_NV,_(z)ei"_z] e_('_x-'_O Vp={u,v,w} (3.2)

We'll consider the temporal stability i.e. complex w corresponding to real a

will be sought.

Substitution of complete flow-field V = V0 + eVp into Navier-Stokes equations

and linearization in e gives an eigenvaIue problem for w

- iwL_ o Vp = L1 o Vp (3.3)

where L1 and L2 are linear operators including derivatives with respect to y.

Discretization of (3.3) in y yields the eigenvalue problem for matrix

(A-i_E)F=O a = D-_"A (3.4)



HerevectorF includesdiscreterepresentationof disturbancesandmatrixes
A andD correspondsto operatorsLx and L2.

3.2. Numerical method

In all works where stability of periodic flows is studied the matrixes A and D

were determined and eigenvalue problem (3.4) is solved. Here we'll introduce an

alternative approach to stability of complex geometry flows which is based on

algorithm for Navier-Stokes equations solution. This approach makes us possible

to study the stability of any periodic flow using a code for DNS of periodic flows.

In all of these codes the flow field is presented in form of two-dimensional Fourier

series in (x, z) plane. If we fix a part of harmonics representing basic flow, then

remaining harmonics will describe the evolution of disturbances. If the amplitude

of disturbances is small enough, it's evolution is described by linearized (near the

basic flow) Navier-Stokes equations. These equations may be written in form

similar to (3.3)

0 L
2ov'p)= El ov'p

where L1 and L2 are the same as in (3.3). All codes for DNS solve the discrete

version of these equations of form

0G = AG
Ot

Here A is the same matrix as in (3.4) and G contains discrete representa-
tion of disturbances. If the finite-difference scheme used in DNS code is known,

the matrix A may be easily related with matrix of transition B. The former
matrix describes the evolution of disturbances over one time step T and relates

disturbances at time t, G k and at time t + _', G as

G = BG k

Transition matrix may be directly computed using DNS code. For Crank-

Nicholson scheme used in our code, matrix B is related with A as

It is easy to prove that matrixes A and B have the same eigenvectors, and

eigenvalues of B, pj are related with eigenvalues of A, Aj as

1

So eigenvalues wj of stability problem may be obtained from #5 as

2i 1 - #j
wj=

7" l+#j



Theform of disturbancescorrespondingto wj is determined by eigenvector of

B associated with/_-.

The method described here was tested by means of computation of Blasius

flow stability and the secondary instability of finite-amplitude TS wave. The

results were in excellent agreement with those of traditional methods.

3.3. Results

Stability of Blasius boundary layer with R = uooS'/v = 1000 distorted by har-

monic velocity modulation or by localized flow inhomogeneity were studied. The

first flow is a model of periodic streaky structure observed under enhanced outer

flow turbulence level, the second one is a model of the single streak or distortion

produced by wake studied in section 2. In both flows inhomogeneity velocity

vector Vi had only streamwise component ui of form

u,=af(y)g(z)

where a is an amplitude, functions f(y) and g(z) defines vertical and spanwise

distribution of flow inhomogeneity. Vertical distribution for both flows was

_ 2

exp(- _i_) -- exp(-_)
f(y) -- (3.5)

with parameters A = 1.2 and y = 1.4 chosen for coincidence with profile of

low-frequency pulsations measured in boundary layer subjected to free-stream

turbulence [9]. This profile is plotted by solid line in Figure 22 a together with

profile of velocity pulsations from [9] shown by points. For the harmonic inho-

mogeneity spanwise distribution was

9(z) = ¢osflz

whereas for localized inhomogeneity it was represented as

[ N ]g(z)= 1-q l+(l+q)_q'_cosnflz q<l (3.6)
2

n=l

The last function with q = 0.63 shown in Figure 22 b has a narrow maximum

within z = 0 and vanishes over the remaindind part of period.

Due to basic flow symmetry, the disturbances may be symmetric or antisym-

metric, i.e. the streamwise velocity of disturbances may be even or odd func-

tion of z. As was mentioned above, the disturbances of both these types may

have fundamental or subharmonic period. So, there exist four types of unstable

modes. Figure 23 shows the spanwise distribution of streamwise velocity Re(u)

and amplitudes of pulsations lul for all these modes computed for harmonically

10



modulatedflowwith a = -0.3, a = 0.25, /3 = 0.6. Symmetric and antisymmet-

tic fundamental modes are shown in Figure 23 a and b, whereas Figure 23 c and

d shows symmetric and antisymmetric subharmonic disturbances. For symmetric

modes [u I is largest at the minimums of basic flow velocity ui, whereas maximal

pulsations of antisymmetric modes coincides with maxima of gradients [equ_/Oz[.

The phase velocity of symmetric modes coincides with TS wave velocity, but

antisymmetric disturbances propagate faster with c = Re(w)/a = 0.6. Further

computations reveals that the subharmonic mode is the most unstable one among

the antisymmetric disturbances and the fundamental mode is the most amplified

symmetric disturbance. So, only subharmonic antisymmetric and fundamental

symmetric modes will be considered later. For brevity, these modes will be named

as antisymmetric and symmetric ones.

Growth rates t_ = Ira(w) of symmetric and antisymmetric modes as func-

tions of amplitude a and spanwise wavenumber/3 are shown in Figures 24 and

25 respectively. These results were computed for a = 0.25; amplitude depen-

dance of _ corresponds to /3 = 0.6, and/_(/3) corresponds to a = 0.3. Growth

rates of all modes increase with amplitude growth. For small amplitudes of flow

inhomogeneity the symmetric modes are the most unstable, whereas antisymmet-

tic disturbances becomes the most amplified for large amplitudes a >_ 0.3. The

/3- dependences of growth rates are different for symmetric and antisymmetric

modes. Growth rates of symmetric modes are maximal for/3 = 0 and gradually

decrease with growth of/3. Amplification rates of antisymmetric disturbances

initially increases with B growth, then reaches maximum at/3 = 0.6 and falls off.

This result contradicts with conclusion of [10] about growth rate of these modes

proportionality to [Ou_/c3z[.

Figure 26 shows the growth rates of symmetric and antisymmetric modes as

functions of reduced frequency F = 106w/R computed in flow with a = -0.3 and

/3 = 0.6. Both symmetric and antisymmetric disturbances amplify much rapidly

then TS waves. The growth rates of these two types of modes are comparable,

with symmetric modes are the most unstable at large frequency, whereas the anti-

symmetric modes are the most amplified low-frequency disturbances. Instability

occurs in wide frequency range 20 < F < 220 with maximal growth rate achieves

at F = 150. Disturbances in the same frequency range amplified in the boundary

layer flow with embedded streamwise vortices in experiment [10].

Stability localized inhomogeneity flow (3.6) with positive and negative ampli-
tudes a = +0.3 was studied in order to reveal the influence of width of inhomo-

geneity region on flow stability. For this purpose the stability of flow (3.6) with

q = 0.63 and various/3 with respect to symmetric modes was computed: The

results shown in Figure 27 demonstrates that the flow with high-speed streak

has almost the same stability characteristics as homogeneous Blasius flow. In

flow with low-speed streak the growth rates of disturbances remains the same

as in Blasius flow if/3 k 0.2. The instability in this flow becomes remarkable

only if B -< 0.2, with growth rate of disturbances increases with/3 diminishing.
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It meansthat singlethin streak does not destabilize flow in spite of inflexible

velocity profile within it. The remarkable instability in this streak occurs only
if it's width exceeds a threshold value L* ,'_ 75". This fact explains the absence

of transition in boundary layer distorted by wake studied in section 2. Really,

in all flow configurations tested, the width of distorted part of boundary layer

did not exceeds the threshold value predicted by theory. It's interesting to note

that the harmonic modulation of small spanwise period Tz < L* (8 > 1) leads

to remarkable instability (see Figure 25). So, the periodically placed streaks are

more dangerous that equal sole streak.

4. Discussion and conclusions.

The purpose of experimental investigation made is to check the predictions of

Goldstein's theory [4-6] describing the interaction of non-uniform flow with bound-

ary layer over the plate. The asymptotic variant of this theory [4] valid for

cr "2_ Rd _ o_ and R1 sufficiently large predicts the linear with z growth of

boundary layer distortion at linear stage of it's development. Further, when
distortion reaches value ,-, 1 the non-linear distortion development leads to sin-

gularity at finite distance from leading edge. The modified theory valid for finite

R_ [6] predicts initial linear growth of distortion, then it reaches maximum and

rapidly falls out due to the action of viscosity. Obviously, the theory predicts

only symmetric regime i.e. symmetric upstream flow disturbances transforms

into symmetric boundary layer distortion.

Among all flow configurations tested only distortion observed in configuration

3 (nose 1:4, uoo = 17m/s, x_ -- 250tara, d = 0.09) entirely coincides with pre-
dictions of Goldstein's theory. For all low unit Reynolds number configurations

the distortion began to decay immediately from the leading edge. The discrep-

ancy between theory and experiment in this case may be caused by relatively

large boundary layer thickness in our experiment. For these configurations the

boundary layer thickness 5* at z ,-_ 100ram was only 1.5-3 times smaller then half

width of wake L. In theory L/5* ratio should be large for viscosity did not effect

on vortex lines deformation.

For blunt nose (1:1 ) the distortion reaches an extremely high value of _ 0.6u_

immediately on leading edge. In thi_ case the stretching of vortex lines in the

vicinity of nose is too strong or the near-separation boundary layer near the

nose is very sensitive to outer flow streamwise vorticity. The development of

such strong disturbances in non-Btasius boundary layer is beyond the scope of

Goldstein's theory.

The theoretical part of the work is devoted to study of spanwise-modulated

flow stability. This flow is a model of streaks found in experiment of Kendall [9] at

high free-stream turbulence level. It was shown that one isolated streak is more
stable then periodically placed streaks of the same shape. The isolated streak

12



doesnot destabilizeflow at all if it is narrowly then thresholdvalueof ._ 75*.

This fact explains the absence of transition in most of configuration tested, where

the width of distorted part of flow was less then this threshold value.
The main results of the work are:

1. Demonstration of steady vortical disturbances amplification in the bound-

ary layer in a qualitative agreement with Goldstein's theory.

2. Detection of antisymmetric boundary layer flow distortion caused by on-

going symmetric wake.
3. Drastic influence of nose shape and unit Reynolds number on wake-

boundary layer interaction.
4. Weak influence of flow distortion in single narrow streak on laminar-

turbulent transition. Theoretical explanation of this phenomenon.
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Table

number

of nose I,.].,,
configu
ration

1 1:4 17

2 1:4 17

3 1:4 17

4 1:4 5

5 1:4 5

6 1:4 5

7 1:4 5

8 1:4 5

9 1:1 17

10 I:1 17

11 1:1 17

d x w

[mm] [mm]

0.09 40

0.09 150

0.09 250

0.3 40

0.3 100

0.3 200

0.09 I 0

0.09 40

0.09 40

0.09 150

0.09 250

u =,/u** L
[mm]

0.0553 0.46

0.0393 0.7

0.0317 0.88

0.109 1.07

0.073 1.33

0.04 1.87

0.128 0.284

0.064 0.567

0.0553 0.46

0.0393 0.76

0.0317 0.88

R, I R, t symmet K K

ry

(see _ )

106 1.17.106 a.s. 2.4 7.83- I(__

106 1.17.106 tr 1.12

106 1.17.10 _ s. 0.72

104 3.45-10 _r a.s. 2.04

104 3.45.10 _" s. 1.10

104 3.45,10 _; s. 0.43

31 3.45.10 g s. 9.01

31 3.45- I0_ s. 2.25

106 1.17- 10 c a.s. 2.40

106 1.17.10 ¢ s. 1.12

106 1.17" 10_ s. 0.72

-3
3.66-10

-t

2.35.10

1.22" 1133

6.62,1(33

2.58.1(j _

-Z
5.42.10

i 35.16 z

1.56-it; z

7.31.163

4.70" 163

s. -symmetric regim, a. s. - antisymmetric regim, tr - transient regim (between symmetric and antisymmetric)
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_C t,t¢
3::

I

Figure 1. (a) - Experimental setup; 1 - plate, 2 - wire, 3 - wire bolder, 4 - probe,
• 5 - wire holder movment, 6, 7 - probe movements, 8, 9 - flaps.

(b) - coordinate system and general designations

(c) - wake parameters: uo- velocity deficite _,L - half-width.
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becomes antisymmetdc in spanwise direction. If the leading edge is too blunt the maximal distodion takes place

immediately at the nose and no further amplif'cation was observed. All these cor_itions and results are beyond
the scope of Goldsteids theory.
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