2,210 research outputs found

    An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)

    Full text link
    The relation between the zero-age main sequence mass of a star and its white-dwarf remnant (the initial-final mass relation) is a powerful tool for exploration of mass loss processes during stellar evolution. We present an empirical derivation of the initial-final mass relation based on spectroscopic analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally consistent data set, we show that the resultant white dwarf mass increases monotonically with progenitor mass for masses greater than 4 solar masses, one of the first open clusters to show this trend. We also find two massive white dwarfs foreground to the cluster that are otherwise consistent with cluster membership. These white dwarfs can be explained as former cluster members moving steadily away from the cluster at speeds of <~0.5 km/s since their formation and may provide the first direct evidence of the loss of white dwarfs from open clusters. Based on these data alone, we constrain the upper mass limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical Journal Letters. Contains some acknowledgements not in accepted version (for space reasons), otherwise identical to accepted versio

    Do Magnetic Fields Prevent Hydrogen from Accreting onto Cool Metal-line White Dwarf Stars?

    Full text link
    It is generally assumed that metals detected in the spectra of a few cool white dwarfs cannot be of primordial origin and must be accreted from the interstellar medium. However, the observed abundances of hydrogen, which should also be accreted from the interstellar medium, are lower than expected from metal accretion. Magnetic fields are thought to be the reason for this discrepancy. We have therefore obtained circular polarization spectra of the helium-rich white dwarfs GD40 and L745-46A, which both show strong metal lines as well as hydrogen. Whereas L745-46A might have a magnetic field of about -6900 G, which is about two times the field strength of 3000G necessary to repell hydrogen at the Alfen radius, only an upper limit for the field strength of GD40 of 4000G (with 99% confidence) can be set which is far off the minimum field strength of 144000G to repell hydrogen.Comment: 4 LaTeX pages, 4 eps figures, to appear in the proceedings of the 14th European Workshop on White Dwarfs, eds. D. Koester and S. Moehler, ASP Conf. Serie

    Model atmosphere analysis of the extreme DQ white dwarf GSC2U J131147.2+292348

    Get PDF
    A new model atmosphere analysis for the peculiar DQ white dwarf discovered by Carollo et al. (2002) is presented. The effective temperature and carbon abundance have been estimated by fitting both the photometric data (UBJ,VRF,IN,JHK) and a low resolution spectrum (3500<lambda<7500 A) with a new model grid for helium-rich white dwarfs with traces of carbon (DQ stars). We estimate Teff ~ 5120 +/- 200 K and log[C/He] ~ -5.8 +/- 0.5, which make GSC2U J131147.2+292348 the coolest DQ star ever observed. This result indicates that the hypothetical transition from C2 to C2H molecules around Teff = 6000 K, which was inferred to explain the absence of DQ stars at lower temperatures, needs to be reconsidered.Comment: 4 pages, 2 figures, accepted for publication in Astronomy and Astrophysics Letter

    Evidence of Rocky Planetesimals Orbiting Two Hyades Stars

    Full text link
    The Hyades is the nearest open cluster, relatively young and containing numerous A-type stars; its known age, distance, and metallicity make it an ideal site to study planetary systems around 2-3 Msun stars at an epoch similar to the late heavy bombardment. Hubble Space Telescope far-ultraviolet spectroscopy strongly suggests ongoing, external metal pollution in two remnant Hyads. For ongoing accretion in both stars, the polluting material has log[n(Si)/n(C)] > 0.2, is more carbon deficient than chondritic meteorites, and is thus rocky. These data are consistent with a picture where rocky planetesimals and small planets have formed in the Hyades around two main-sequence A-type stars, whose white dwarf descendants bear the scars. These detections via metal pollution are shown to be equivalent to infrared excesses of Lir/L* ~ 1e-6 in the terrestrial zone of the stars.Comment: 7 pages, 3 figures, 2 tables, accepted to MNRA

    XMM-Newton observations of EF Eridani: the textbook example of low-accretion rate polars

    Get PDF
    Archival X-ray observations of EF Eridani obtained in a low state revealed distinct X-ray detections at a luminosity L_X ~ 2 10^{29} erg/s, three orders of magnitude below its high state value. The plasma temperature was found to be as low as kT \loa 2 keV, a factor 10 below the high state. The X-ray/UV/IR spectral energy distribution suggests faint residual accretion rather than coronal emission as being responsible for the low-state X-ray emission. EF Eri thus showed a clear transition from being shock-dominated in the high state to be cyclotron-dominated in the low state. From the optical/UV spectral energy distribution we re-determine the photospheric temperature of the white dwarf to \~10000K. Contrary to earlier claims, WD model atmospheres produce sufficient UV flux to reproduce the published GALEX flux and orbital modulation.Comment: A&A, in pres

    The use of a conventional wind tunnel as a multigas facility

    Get PDF
    Hypersonic and supersonic wind tunnels as continuous flow multigas facilitie
    • …
    corecore